|
| 1 | +from cellprofiler_core.module.image_segmentation import ObjectProcessing |
| 2 | +from cellprofiler_core.setting import ( |
| 3 | + Divider, |
| 4 | +) |
| 5 | +from cellprofiler_core.setting.text import Alphanumeric |
| 6 | + |
| 7 | +__doc__ = "" |
| 8 | + |
| 9 | +import logging |
| 10 | +import os |
| 11 | + |
| 12 | +import numpy |
| 13 | +import scipy |
| 14 | +import scipy.ndimage |
| 15 | +import scipy.sparse |
| 16 | + |
| 17 | +import cellprofiler_core.object |
| 18 | +from cellprofiler.utilities.rules import Rules |
| 19 | + |
| 20 | +LOGGER = logging.getLogger(__name__) |
| 21 | + |
| 22 | + |
| 23 | +class FilterObjects_StringMatch(ObjectProcessing): |
| 24 | + module_name = "FilterObjects_StringMatch" |
| 25 | + |
| 26 | + variable_revision_number = 1 |
| 27 | + |
| 28 | + def __init__(self): |
| 29 | + self.rules = Rules() |
| 30 | + |
| 31 | + super(FilterObjects_StringMatch, self).__init__() |
| 32 | + |
| 33 | + def create_settings(self): |
| 34 | + super(FilterObjects_StringMatch, self).create_settings() |
| 35 | + |
| 36 | + self.x_name.text = """Select the objects to filter""" |
| 37 | + |
| 38 | + self.x_name.doc = "" |
| 39 | + |
| 40 | + self.y_name.text = """Name the output objects""" |
| 41 | + |
| 42 | + self.y_name.doc = "Enter a name for the collection of objects that are retained after applying the filter(s)." |
| 43 | + |
| 44 | + self.spacer_1 = Divider(line=False) |
| 45 | + |
| 46 | + self.filter_out = Alphanumeric( |
| 47 | + "What string to filter out", |
| 48 | + "AAAA", |
| 49 | + doc="""Enter a name for the measurement calculated by this module.""", |
| 50 | + ) |
| 51 | + |
| 52 | + self.rules.create_settings() |
| 53 | + |
| 54 | + def settings(self): |
| 55 | + settings = super(FilterObjects_StringMatch, self).settings() |
| 56 | + settings += [self.filter_out] |
| 57 | + return settings |
| 58 | + |
| 59 | + def visible_settings(self): |
| 60 | + visible_settings = super(FilterObjects_StringMatch, self).visible_settings() |
| 61 | + visible_settings += [ |
| 62 | + self.filter_out |
| 63 | + ] |
| 64 | + return visible_settings |
| 65 | + |
| 66 | + def run(self, workspace): |
| 67 | + """Filter objects for this image set, display results""" |
| 68 | + src_objects = workspace.get_objects(self.x_name.value) |
| 69 | + |
| 70 | + indexes = self.keep_by_string(workspace, src_objects) |
| 71 | + |
| 72 | + # |
| 73 | + # Create an array that maps label indexes to their new values |
| 74 | + # All labels to be deleted have a value in this array of zero |
| 75 | + # |
| 76 | + new_object_count = len(indexes) |
| 77 | + max_label = numpy.max(src_objects.segmented) |
| 78 | + label_indexes = numpy.zeros((max_label + 1,), int) |
| 79 | + label_indexes[indexes] = numpy.arange(1, new_object_count + 1) |
| 80 | + # |
| 81 | + # Loop over both the primary and additional objects |
| 82 | + # |
| 83 | + object_list = [(self.x_name.value, self.y_name.value)] |
| 84 | + m = workspace.measurements |
| 85 | + first_set = True |
| 86 | + for src_name, target_name in object_list: |
| 87 | + src_objects = workspace.get_objects(src_name) |
| 88 | + target_labels = src_objects.segmented.copy() |
| 89 | + # |
| 90 | + # Reindex the labels of the old source image |
| 91 | + # |
| 92 | + target_labels[target_labels > max_label] = 0 |
| 93 | + target_labels = label_indexes[target_labels] |
| 94 | + # |
| 95 | + # Make a new set of objects - retain the old set's unedited |
| 96 | + # segmentation for the new and generally try to copy stuff |
| 97 | + # from the old to the new. |
| 98 | + # |
| 99 | + target_objects = cellprofiler_core.object.Objects() |
| 100 | + target_objects.segmented = target_labels |
| 101 | + target_objects.unedited_segmented = src_objects.unedited_segmented |
| 102 | + # |
| 103 | + # Remove the filtered objects from the small_removed_segmented |
| 104 | + # if present. "small_removed_segmented" should really be |
| 105 | + # "filtered_removed_segmented". |
| 106 | + # |
| 107 | + small_removed = src_objects.small_removed_segmented.copy() |
| 108 | + small_removed[(target_labels == 0) & (src_objects.segmented != 0)] = 0 |
| 109 | + target_objects.small_removed_segmented = small_removed |
| 110 | + if src_objects.has_parent_image: |
| 111 | + target_objects.parent_image = src_objects.parent_image |
| 112 | + workspace.object_set.add_objects(target_objects, target_name) |
| 113 | + |
| 114 | + self.add_measurements(workspace, src_name, target_name) |
| 115 | + if self.show_window and first_set: |
| 116 | + workspace.display_data.src_objects_segmented = src_objects.segmented |
| 117 | + workspace.display_data.target_objects_segmented = target_objects.segmented |
| 118 | + workspace.display_data.dimensions = src_objects.dimensions |
| 119 | + first_set = False |
| 120 | + |
| 121 | + def display(self, workspace, figure): |
| 122 | + """Display what was filtered""" |
| 123 | + src_name = self.x_name.value |
| 124 | + src_objects_segmented = workspace.display_data.src_objects_segmented |
| 125 | + target_objects_segmented = workspace.display_data.target_objects_segmented |
| 126 | + dimensions = workspace.display_data.dimensions |
| 127 | + |
| 128 | + target_name = self.y_name.value |
| 129 | + |
| 130 | + figure.set_subplots((2, 2), dimensions=dimensions) |
| 131 | + |
| 132 | + figure.subplot_imshow_labels( |
| 133 | + 0, 0, src_objects_segmented, title="Original: %s" % src_name |
| 134 | + ) |
| 135 | + |
| 136 | + figure.subplot_imshow_labels( |
| 137 | + 1, |
| 138 | + 0, |
| 139 | + target_objects_segmented, |
| 140 | + title="Filtered: %s" % target_name, |
| 141 | + sharexy=figure.subplot(0, 0), |
| 142 | + ) |
| 143 | + |
| 144 | + pre = numpy.max(src_objects_segmented) |
| 145 | + post = numpy.max(target_objects_segmented) |
| 146 | + |
| 147 | + statistics = [[pre], [post], [pre - post]] |
| 148 | + |
| 149 | + figure.subplot_table( |
| 150 | + 0, |
| 151 | + 1, |
| 152 | + statistics, |
| 153 | + row_labels=( |
| 154 | + "Number of objects pre-filtering", |
| 155 | + "Number of objects post-filtering", |
| 156 | + "Number of objects removed", |
| 157 | + ), |
| 158 | + ) |
| 159 | + |
| 160 | + def keep_by_string(self, workspace, src_objects): |
| 161 | + """ |
| 162 | + workspace - workspace passed into Run |
| 163 | + src_objects - the Objects instance to be filtered |
| 164 | + """ |
| 165 | + src_name = self.x_name.value |
| 166 | + m = workspace.measurements |
| 167 | + values = m.get_current_measurement(src_name, "Barcode_BarcodeCalled") |
| 168 | + # Is this structure still necessary or is it an artifact? |
| 169 | + # Could be just values == self.filter_out.value |
| 170 | + # Make an array of True |
| 171 | + hits = numpy.ones(len(values), bool) |
| 172 | + # Fill with False for those where we want to filter out |
| 173 | + hits[values == self.filter_out.value] = False |
| 174 | + # Get object numbers for things that are True |
| 175 | + indexes = numpy.argwhere(hits)[:, 0] |
| 176 | + # Objects are 1 counted, Python is 0 counted |
| 177 | + indexes = indexes + 1 |
| 178 | + |
| 179 | + return indexes |
0 commit comments