|
152 | 152 | ),
|
153 | 153 | ),
|
154 | 154 |
|
| 155 | + "batch_norm_GB": dict( |
| 156 | + name=["batch_norm_GB"], |
| 157 | + interface=['CustomizedTest'], |
| 158 | + dtype=[np.float32, np.float16, np.float64], |
| 159 | + atol=1e-3, |
| 160 | + rtol=1e-4, |
| 161 | + atol_half=1e-1, |
| 162 | + rtol_half=1e-2, |
| 163 | + para=dict( |
| 164 | + training=[True, True, True], |
| 165 | + momentum=[0.01, 0.01, 0.01], |
| 166 | + axis=[0, 1, 2], |
| 167 | + eps=[1e-4, 1e-4, 1e-4], |
| 168 | + ), |
| 169 | + tensor_para=dict( |
| 170 | + args=[ |
| 171 | + { |
| 172 | + "ins": ["input"], |
| 173 | + "shape": ((2, 64, 32, 32),(2, 64, 32, 32),(2, 64, 32, 32)), |
| 174 | + "gen_fn": "Genfunc.randn", |
| 175 | + }, |
| 176 | + { |
| 177 | + "ins": ["running_mean"], |
| 178 | + "shape": ((2,), (64,), (32,)), |
| 179 | + "gen_fn": "Genfunc.zeros", |
| 180 | + }, |
| 181 | + { |
| 182 | + "ins": ["running_var"], |
| 183 | + "shape": ((2,), (64,), (32,)), |
| 184 | + "gen_fn": "Genfunc.ones", |
| 185 | + }, |
| 186 | + { |
| 187 | + "ins": ["weight", "bias"], |
| 188 | + "shape": ((2,), (64,), (32,)), |
| 189 | + "gen_fn": "Genfunc.randn", |
| 190 | + }, |
| 191 | + ] |
| 192 | + ), |
| 193 | + ), |
| 194 | + |
155 | 195 | # FIXME batch_norm输入0size的张量报错
|
156 | 196 | 'batch_norm': dict(
|
157 | 197 | name=["batch_norm"],
|
|
0 commit comments