Skip to content

Chapter 9: Listing 9.21 #30

@cptanalatriste

Description

@cptanalatriste

I noticed that for both teams, when calling team_step() we are using the same parameter vector param[0] for both teams:

        acts_1, act_means1, qvals1, obs_small_1, ids_1 = \
            team_step(team1,params[0],acts_1,layers) #B
        env.set_action(team1, acts_1.detach().numpy().astype(np.int32)) #C

        acts_2, act_means2, qvals2, obs_small_2, ids_2 = \
            team_step(team2,params[0],acts_2,layers)
        env.set_action(team2, acts_2.detach().numpy().astype(np.int32))

Shouldn't it be param[0] for team 1 and param[1] for team 2? That's the behaviour shown later when calling train:

            loss1 = train(batch_size,replay1,params[0],layers=layers,J=N1)
            loss2 = train(batch_size,replay2,params[1],layers=layers,J=N1)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions