|
| 1 | +""" |
| 2 | +HeartENN architecture (Richter et al., 2020). |
| 3 | +""" |
| 4 | +import numpy as np |
| 5 | +import torch |
| 6 | +import torch.nn as nn |
| 7 | + |
| 8 | + |
| 9 | +class HeartENN(nn.Module): |
| 10 | + def __init__(self, sequence_length, n_genomic_features): |
| 11 | + """ |
| 12 | + Parameters |
| 13 | + ---------- |
| 14 | + sequence_length : int |
| 15 | + Length of sequence context on which to train. |
| 16 | + n_genomic_features : int |
| 17 | + The number of chromatin features to predict. |
| 18 | +
|
| 19 | + Attributes |
| 20 | + ---------- |
| 21 | + conv_net : torch.nn.Sequential |
| 22 | + classifier : torch.nn.Sequential |
| 23 | +
|
| 24 | + """ |
| 25 | + super(HeartENN, self).__init__() |
| 26 | + conv_kernel_size = 8 |
| 27 | + pool_kernel_size = 4 |
| 28 | + |
| 29 | + self.conv_net = nn.Sequential( |
| 30 | + nn.Conv1d(4, 60, kernel_size=conv_kernel_size), |
| 31 | + nn.ReLU(inplace=True), |
| 32 | + nn.Conv1d(60, 60, kernel_size=conv_kernel_size), |
| 33 | + nn.ReLU(inplace=True), |
| 34 | + nn.MaxPool1d( |
| 35 | + kernel_size=pool_kernel_size, stride=pool_kernel_size), |
| 36 | + nn.BatchNorm1d(60), |
| 37 | + |
| 38 | + nn.Conv1d(60, 80, kernel_size=conv_kernel_size), |
| 39 | + nn.ReLU(inplace=True), |
| 40 | + nn.Conv1d(80, 80, kernel_size=conv_kernel_size), |
| 41 | + nn.ReLU(inplace=True), |
| 42 | + nn.MaxPool1d( |
| 43 | + kernel_size=pool_kernel_size, stride=pool_kernel_size), |
| 44 | + nn.BatchNorm1d(80), |
| 45 | + nn.Dropout(p=0.4), |
| 46 | + |
| 47 | + nn.Conv1d(80, 240, kernel_size=conv_kernel_size), |
| 48 | + nn.ReLU(inplace=True), |
| 49 | + nn.Conv1d(240, 240, kernel_size=conv_kernel_size), |
| 50 | + nn.ReLU(inplace=True), |
| 51 | + nn.BatchNorm1d(240), |
| 52 | + nn.Dropout(p=0.6)) |
| 53 | + |
| 54 | + reduce_by = 2 * (conv_kernel_size - 1) |
| 55 | + pool_kernel_size = float(pool_kernel_size) |
| 56 | + self._n_channels = int( |
| 57 | + np.floor( |
| 58 | + (np.floor( |
| 59 | + (sequence_length - reduce_by) / pool_kernel_size) |
| 60 | + - reduce_by) / pool_kernel_size) |
| 61 | + - reduce_by) |
| 62 | + self.classifier = nn.Sequential( |
| 63 | + nn.Linear(240 * self._n_channels, n_genomic_features), |
| 64 | + nn.ReLU(inplace=True), |
| 65 | + nn.BatchNorm1d(n_genomic_features), |
| 66 | + nn.Linear(n_genomic_features, n_genomic_features), |
| 67 | + nn.Sigmoid()) |
| 68 | + |
| 69 | + def forward(self, x): |
| 70 | + """Forward propagation of a batch.i |
| 71 | +
|
| 72 | + """ |
| 73 | + for layer in self.conv_net.children(): |
| 74 | + if isinstance(layer, nn.Conv1d): |
| 75 | + layer.weight.data.renorm_(2, 0, 0.9) |
| 76 | + for layer in self.classifier.children(): |
| 77 | + if isinstance(layer, nn.Linear): |
| 78 | + layer.weight.data.renorm_(2, 0, 0.9) |
| 79 | + out = self.conv_net(x) |
| 80 | + reshape_out = out.view(out.size(0), 240 * self._n_channels) |
| 81 | + predict = self.classifier(reshape_out) |
| 82 | + return predict |
| 83 | + |
| 84 | +def criterion(): |
| 85 | + return nn.BCELoss() |
| 86 | + |
| 87 | +def get_optimizer(lr): |
| 88 | + return (torch.optim.SGD, |
| 89 | + {"lr": lr, "weight_decay": 1e-6, "momentum": 0.9}) |
0 commit comments