-
Notifications
You must be signed in to change notification settings - Fork 316
Open
Labels
enhancementNew feature or requestNew feature or requestoicOpen Innovation Community ContributionsOpen Innovation Community ContributionstriageIssues / Features awaiting triageIssues / Features awaiting triage
Milestone
Description
Overview
Create a sample agent implementation using Goose AI Agent Framework with support for both OpenAI-compatible endpoints and A2A (Agent-to-Agent) integration, following the established pattern from CrewAI and LangChain agent implementations.
Agent Specifications
Agent Details
- Name:
goose-agent
- Framework: Goose AI Agent
- Location:
agent_runtimes/goose_agent/
- Language: Python 3.11+
- Purpose: Demonstrate AI-powered developer tooling and automation via Goose framework
Goose Framework Features
- Developer-Focused: Specialized for software development workflows
- Tool Integration: Native support for development tools and APIs
- Code Understanding: Advanced code analysis and generation capabilities
- Automation: Intelligent automation of development tasks
- Extensible: Plugin architecture for custom tooling
Integration Patterns
OpenAI-Compatible Endpoint Integration
# OpenAI API endpoint integration
POST /openai/v1/chat/completions
Content-Type: application/json
Authorization: Bearer ${OPENAI_API_KEY}
{
"model": "gpt-4",
"messages": [
{"role": "user", "content": "Analyze this codebase and suggest improvements using Goose"}
],
"tools": [
{
"type": "function",
"function": {
"name": "goose_code_analysis",
"description": "AI-powered code analysis and improvement suggestions",
"parameters": {
"type": "object",
"properties": {
"repository_path": {"type": "string"},
"analysis_type": {"type": "string"},
"language": {"type": "string"}
}
}
}
}
]
}
A2A (Agent-to-Agent) Integration
# A2A endpoint integration
POST /a2a/v1/agents/{agent_id}/invoke
Content-Type: application/json
Authorization: Bearer ${A2A_API_KEY}
{
"agent_id": "goose-developer-agent",
"input": {
"task": "Code review and optimization",
"repository": "https://github.com/example/project",
"focus_areas": ["performance", "security", "maintainability"]
},
"context": {
"session_id": "session-123",
"user_id": "developer-456"
}
}
Agent Capabilities
1. Code Analysis and Generation
- Static Analysis: Code quality, security, and performance analysis
- Code Generation: Intelligent code completion and generation
- Refactoring: Automated code refactoring and optimization
- Documentation: Automatic documentation generation
2. Development Workflow Automation
- CI/CD Integration: Automated testing and deployment workflows
- Issue Resolution: Intelligent bug detection and fixing
- Code Review: Automated code review and suggestions
- Project Management: Task automation and project tracking
3. Developer Productivity Tools
- IDE Integration: Support for popular development environments
- Git Operations: Intelligent version control operations
- Testing: Automated test generation and execution
- Debugging: AI-assisted debugging and troubleshooting
Implementation Requirements
Directory Structure
agent_runtimes/goose_agent/
├── src/
│ ├── __init__.py
│ ├── main.py # Main agent runtime
│ ├── goose_integration/
│ │ ├── __init__.py
│ │ ├── goose_client.py # Goose framework integration
│ │ ├── developer_agent.py # Core developer agent
│ │ └── workflow_engine.py # Development workflow automation
│ ├── tools/
│ │ ├── __init__.py
│ │ ├── code_analyzer.py # Code analysis tools
│ │ ├── git_operations.py # Git integration tools
│ │ ├── ci_cd_tools.py # CI/CD automation
│ │ └── testing_tools.py # Testing automation
│ ├── endpoints/
│ │ ├── __init__.py
│ │ ├── openai_handler.py # OpenAI-compatible endpoint
│ │ └── a2a_handler.py # A2A endpoint integration
│ ├── workflows/
│ │ ├── __init__.py
│ │ ├── code_review.py # Code review workflow
│ │ ├── bug_fixing.py # Bug fixing workflow
│ │ └── feature_development.py # Feature development workflow
│ └── utils/
│ ├── __init__.py
│ ├── config.py # Configuration management
│ └── monitoring.py # Agent monitoring and metrics
├── tests/
│ ├── unit/
│ ├── integration/
│ └── e2e/
├── config/
│ ├── agent_config.yaml
│ ├── tools_config.yaml
│ └── workflow_config.yaml
├── requirements.txt
├── requirements-dev.txt
├── README.md
├── Dockerfile
├── docker-compose.yml
└── examples/
├── code_analysis_example.py
├── automated_review.py
└── workflow_automation.py
Core Dependencies
# requirements.txt
# Goose Framework
goose-ai>=0.1.0 # or latest version
# Core dependencies
fastapi>=0.104.0
uvicorn>=0.24.0
pydantic>=2.5.0
httpx>=0.25.0
aiofiles>=23.2.0
# Development tools integration
gitpython>=3.1.40
pygit2>=1.13.0
ast-decompiler>=0.7.0
autopep8>=2.0.0
black>=23.11.0
isort>=5.12.0
mypy>=1.7.0
# Code analysis
pylint>=3.0.0
flake8>=6.1.0
bandit>=1.7.5
safety>=2.3.5
# OpenAI compatibility
openai>=1.3.0
tiktoken>=0.5.0
# MCP integration
mcp>=1.0.0
# Monitoring and observability
prometheus-client>=0.19.0
structlog>=23.2.0
Configuration
Agent Configuration
# config/agent_config.yaml
goose:
framework_version: "latest"
developer_mode: true
auto_tools: true
agent:
name: "goose-developer"
specialization: "software_development"
model: "gpt-4"
temperature: 0.1
max_tokens: 4096
capabilities:
code_analysis:
enabled: true
languages: ["python", "javascript", "typescript", "go", "rust", "java"]
static_analysis: true
security_scanning: true
code_generation:
enabled: true
auto_complete: true
refactoring: true
documentation: true
workflow_automation:
enabled: true
ci_cd_integration: true
testing: true
deployment: true
tools:
git:
enabled: true
auto_commit: false
branch_management: true
ide_integration:
vscode: true
jetbrains: true
vim: true
testing:
unit_tests: true
integration_tests: true
e2e_tests: true
coverage_reporting: true
Workflow Configuration
# config/workflow_config.yaml
workflows:
code_review:
triggers: ["pull_request", "manual"]
steps:
- static_analysis
- security_scan
- performance_check
- style_check
auto_approve_threshold: 0.9
bug_fixing:
triggers: ["issue_created", "bug_report"]
steps:
- issue_analysis
- root_cause_analysis
- fix_generation
- test_generation
- validation
feature_development:
triggers: ["feature_request", "manual"]
steps:
- requirement_analysis
- design_planning
- code_generation
- testing
- documentation
integration:
github:
enabled: true
webhook_url: "/webhooks/github"
token: "${GITHUB_TOKEN}"
gitlab:
enabled: false
url: "${GITLAB_URL}"
token: "${GITLAB_TOKEN}"
jira:
enabled: true
url: "${JIRA_URL}"
credentials: "${JIRA_CREDENTIALS}"
Goose Framework Integration
Core Agent Implementation
# Goose framework integration
from goose.agent import GooseAgent
from goose.tools import CodeAnalyzer, GitTool, TestRunner
class GooseDeveloperAgent(GooseAgent):
def __init__(self, config: Dict[str, Any]):
super().__init__(config)
self.code_analyzer = CodeAnalyzer()
self.git_tool = GitTool()
self.test_runner = TestRunner()
async def analyze_codebase(self, repository_path: str) -> Dict[str, Any]:
"""Comprehensive codebase analysis"""
analysis_results = {
"code_quality": await self.code_analyzer.analyze_quality(repository_path),
"security_issues": await self.code_analyzer.security_scan(repository_path),
"performance_metrics": await self.code_analyzer.performance_analysis(repository_path),
"test_coverage": await self.test_runner.coverage_report(repository_path)
}
return analysis_results
async def generate_fix(self, issue: Dict[str, Any]) -> str:
"""Generate code fix for identified issues"""
fix_code = await self.generate_code(
problem_description=issue["description"],
context=issue["context"],
language=issue["language"]
)
return fix_code
Workflow Engine
class GooseWorkflowEngine:
def __init__(self, agent: GooseDeveloperAgent):
self.agent = agent
self.workflows = {}
async def execute_code_review_workflow(self, pr_data: Dict[str, Any]) -> Dict[str, Any]:
"""Execute automated code review workflow"""
# Step 1: Analyze changes
changes_analysis = await self.agent.analyze_changes(pr_data["diff"])
# Step 2: Security scan
security_results = await self.agent.security_scan(pr_data["files"])
# Step 3: Performance analysis
performance_results = await self.agent.performance_check(pr_data["files"])
# Step 4: Generate recommendations
recommendations = await self.agent.generate_recommendations(
changes_analysis, security_results, performance_results
)
return {
"analysis": changes_analysis,
"security": security_results,
"performance": performance_results,
"recommendations": recommendations,
"approval_score": self._calculate_approval_score(recommendations)
}
OpenAI Integration
Chat Completions Handler
@app.post("/openai/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
"""OpenAI-compatible chat completions endpoint"""
# Extract development task from request
task = extract_development_task(request)
# Execute Goose workflow
results = await goose_agent.execute_task(
task=task,
tools=determine_required_tools(request),
context=extract_context(request)
)
# Format response in OpenAI format
return ChatCompletionResponse(
choices=[
Choice(
message=ChatMessage(
role="assistant",
content=results["response"],
tool_calls=format_tool_calls(results["tool_usage"])
)
)
]
)
A2A Integration
Agent Invocation Handler
@app.post("/a2a/v1/agents/{agent_id}/invoke")
async def invoke_agent(agent_id: str, request: A2AInvokeRequest):
"""A2A agent invocation endpoint"""
# Parse development task
task = request.input.get("task")
repository = request.input.get("repository")
# Execute Goose development workflow
results = await goose_agent.execute_development_workflow(
task=task,
repository=repository,
context=request.context
)
return A2AResponse(
agent_id=agent_id,
output={
"result": results["output"],
"code_changes": results.get("code_changes", []),
"test_results": results.get("test_results", {}),
"recommendations": results.get("recommendations", [])
},
metadata={
"execution_time": results["execution_time"],
"tools_used": results["tools_used"],
"workflow_type": results["workflow_type"]
}
)
Development Workflows
Automated Code Review
class CodeReviewWorkflow:
async def execute(self, pull_request: Dict[str, Any]) -> Dict[str, Any]:
# Analyze code changes
analysis = await goose_agent.analyze_code_changes(
diff=pull_request["diff"],
files=pull_request["files"]
)
# Run automated tests
test_results = await goose_agent.run_tests(
repository=pull_request["repository"],
branch=pull_request["branch"]
)
# Generate review comments
review_comments = await goose_agent.generate_review_comments(
analysis=analysis,
test_results=test_results
)
return {
"analysis": analysis,
"test_results": test_results,
"review_comments": review_comments,
"approval_recommendation": analysis["approval_score"] > 0.8
}
Bug Fixing Workflow
class BugFixingWorkflow:
async def execute(self, issue: Dict[str, Any]) -> Dict[str, Any]:
# Analyze the bug report
bug_analysis = await goose_agent.analyze_bug(issue["description"])
# Generate potential fixes
fixes = await goose_agent.generate_fixes(bug_analysis)
# Validate fixes with tests
validated_fixes = []
for fix in fixes:
test_results = await goose_agent.test_fix(fix)
if test_results["passed"]:
validated_fixes.append(fix)
return {
"bug_analysis": bug_analysis,
"proposed_fixes": validated_fixes,
"test_results": test_results
}
Advanced Features
IDE Integration
- VS Code Extension: Native VS Code integration
- JetBrains Plugin: IntelliJ IDEA and PyCharm support
- Vim Plugin: Command-line editor integration
- Web Interface: Browser-based development environment
CI/CD Integration
- GitHub Actions: Automated workflow triggers
- GitLab CI: Pipeline integration
- Jenkins: Build automation
- Custom Webhooks: Integration with any CI/CD system
Code Quality Tools
- Static Analysis: Comprehensive code quality checks
- Security Scanning: Vulnerability detection
- Performance Profiling: Performance bottleneck identification
- Test Coverage: Automated test coverage analysis
Testing Strategy
Integration Tests
# Test OpenAI endpoint
async def test_openai_code_analysis():
client = AsyncOpenAI(base_url="http://localhost:8001/openai/v1")
response = await client.chat.completions.create(
model="goose-developer",
messages=[{"role": "user", "content": "Review this Python code for issues"}],
tools=[{"type": "function", "function": {"name": "analyze_code"}}]
)
assert "code_quality" in response.choices[0].message.content
# Test A2A endpoint
async def test_a2a_bug_fixing():
response = await httpx.post(
"http://localhost:8002/a2a/v1/agents/goose-developer/invoke",
json={
"input": {
"task": "Fix performance issue in database queries",
"repository": "https://github.com/test/repo"
},
"context": {"priority": "high"}
}
)
assert response.status_code == 200
assert "proposed_fixes" in response.json()["output"]
Acceptance Criteria
- Python agent runtime using Goose AI Agent framework
- OpenAI-compatible endpoint (/openai/v1/chat/completions)
- A2A endpoint integration (/a2a/v1/agents/{agent_id}/invoke)
- Code analysis and generation capabilities
- Development workflow automation (code review, bug fixing, feature development)
- Git and version control integration
- CI/CD pipeline integration
- IDE integration support
- Automated testing and coverage reporting
- Security scanning and vulnerability detection
- Docker containerization support
- Integration tests for both endpoint types
- Performance monitoring and observability
- Complete documentation with development workflow examples
Priority
High - Demonstrates AI-powered developer productivity tooling
Dependencies
- Goose AI Agent framework
- Git integration libraries (GitPython, pygit2)
- Code analysis tools (pylint, flake8, bandit)
- FastAPI for endpoint implementation
- OpenAI client compatibility
Use Cases
- Automated code review and analysis
- Intelligent bug detection and fixing
- AI-assisted feature development
- Code quality improvement automation
- Development workflow optimization
- CI/CD pipeline enhancement
- Developer productivity acceleration
- Technical debt management
Metadata
Metadata
Assignees
Labels
enhancementNew feature or requestNew feature or requestoicOpen Innovation Community ContributionsOpen Innovation Community ContributionstriageIssues / Features awaiting triageIssues / Features awaiting triage