@@ -52,7 +52,7 @@ and 3 edge(s):
52523 => 4
5353
5454with vertex data:
55- 4 - element Dictionaries . Dictionary{Int64, Any}
55+ 4 - element Dictionary{Int64, Any}
5656 1 │ ((dim= 2 | id= 739 | " 1,2" ),)
5757 2 │ ((dim= 2 | id= 739 | " 1,2" ), (dim= 2 | id= 920 | " 2,3" ))
5858 3 │ ((dim= 2 | id= 920 | " 2,3" ), (dim= 2 | id= 761 | " 3,4" ))
@@ -104,7 +104,7 @@ and 4 edge(s):
104104(1 , 2 ) => (2 , 2 )
105105
106106with vertex data:
107- 4 - element Dictionaries . Dictionary{Tuple{Int64, Int64}, Any}
107+ 4 - element Dictionary{Tuple{Int64, Int64}, Any}
108108 (1 , 1 ) │ ((dim= 2 | id= 712 | " 1×1,2×1" ), (dim= 2 | id= 598 | " 1×1,1×2" ))
109109 (2 , 1 ) │ ((dim= 2 | id= 712 | " 1×1,2×1" ), (dim= 2 | id= 457 | " 2×1,2×2" ))
110110 (1 , 2 ) │ ((dim= 2 | id= 598 | " 1×1,1×2" ), (dim= 2 | id= 683 | " 1×2,2×2" ))
@@ -134,7 +134,7 @@ and 1 edge(s):
134134(1 , 1 ) => (1 , 2 )
135135
136136with vertex data:
137- 2 - element Dictionaries . Dictionary{Tuple{Int64, Int64}, Any}
137+ 2 - element Dictionary{Tuple{Int64, Int64}, Any}
138138 (1 , 1 ) │ ((dim= 2 | id= 712 | " 1×1,2×1" ), (dim= 2 | id= 598 | " 1×1,1×2" ))
139139 (1 , 2 ) │ ((dim= 2 | id= 598 | " 1×1,1×2" ), (dim= 2 | id= 683 | " 1×2,2×2" ))
140140
@@ -148,7 +148,7 @@ and 1 edge(s):
148148(2 , 1 ) => (2 , 2 )
149149
150150with vertex data:
151- 2 - element Dictionaries . Dictionary{Tuple{Int64, Int64}, Any}
151+ 2 - element Dictionary{Tuple{Int64, Int64}, Any}
152152 (2 , 1 ) │ ((dim= 2 | id= 712 | " 1×1,2×1" ), (dim= 2 | id= 457 | " 2×1,2×2" ))
153153 (2 , 2 ) │ ((dim= 2 | id= 457 | " 2×1,2×2" ), (dim= 2 | id= 683 | " 1×2,2×2" ))
154154```
@@ -164,7 +164,7 @@ julia> using ITensorNetworks: ⊗, contract, contraction_sequence
164164julia> using ITensorUnicodePlots: @visualize
165165
166166julia> s = siteinds (" S=1/2" , named_grid (3 ))
167- ITensorNetworks . IndsNetwork{Int64, ITensors . Index} with 3 vertices:
167+ IndsNetwork{Int64, Index} with 3 vertices:
1681683 - element Vector{Int64}:
169169 1
170170 2
@@ -175,13 +175,13 @@ and 2 edge(s):
1751752 => 3
176176
177177with vertex data:
178- 3 - element Dictionaries . Dictionary{Int64, Vector{ITensors . Index}}
179- 1 │ ITensors . Index[(dim= 2 | id= 830 | " S=1/2,Site,n=1" )]
180- 2 │ ITensors . Index[(dim= 2 | id= 369 | " S=1/2,Site,n=2" )]
181- 3 │ ITensors . Index[(dim= 2 | id= 558 | " S=1/2,Site,n=3" )]
178+ 3 - element Dictionary{Int64, Vector{Index}}
179+ 1 │ Index[(dim= 2 | id= 830 | " S=1/2,Site,n=1" )]
180+ 2 │ Index[(dim= 2 | id= 369 | " S=1/2,Site,n=2" )]
181+ 3 │ Index[(dim= 2 | id= 558 | " S=1/2,Site,n=3" )]
182182
183183and edge data:
184- 0 - element Dictionaries . Dictionary{NamedGraphs . NamedEdge{Int64}, Vector{ITensors . Index}}
184+ 0 - element Dictionary{NamedEdge{Int64}, Vector{Index}}
185185
186186julia> tn1 = ITensorNetwork (s; link_space= 2 )
187187ITensorNetwork{Int64} with 3 vertices:
@@ -195,7 +195,7 @@ and 2 edge(s):
1951952 => 3
196196
197197with vertex data:
198- 3 - element Dictionaries . Dictionary{Int64, Any}
198+ 3 - element Dictionary{Int64, Any}
199199 1 │ ((dim= 2 | id= 830 | " S=1/2,Site,n=1" ), (dim= 2 | id= 186 | " 1,2" ))
200200 2 │ ((dim= 2 | id= 369 | " S=1/2,Site,n=2" ), (dim= 2 | id= 186 | " 1,2" ), (dim= 2 | id= 430 | " 2,3…
201201 3 │ ((dim=2|id=558|" S= 1 / 2 ,Site,n= 3 " ), (dim=2|id=430|" 2 ,3 " ))
@@ -212,7 +212,7 @@ and 2 edge(s):
2122122 => 3
213213
214214with vertex data:
215- 3-element Dictionaries. Dictionary{Int64, Any}
215+ 3-element Dictionary{Int64, Any}
216216 1 │ ((dim=2|id=830|" S= 1 / 2 ,Site,n= 1 " ), (dim=2|id=994|" 1 ,2 " ))
217217 2 │ ((dim=2|id=369|" S= 1 / 2 ,Site,n= 2 " ), (dim=2|id=994|" 1 ,2 " ), (dim=2|id=978|" 2 ,3 …
218218 3 │ ((dim= 2 | id= 558 | " S=1/2,Site,n=3" ), (dim= 2 | id= 978 | " 2,3" ))
@@ -293,8 +293,8 @@ julia> @visualize Z;
293293
294294julia> contraction_sequence (Z)
2952952 - element Vector{Vector}:
296- NamedGraphs . Key{Tuple{Int64, Int64}}[Key ((1 , 1 )), Key ((1 , 2 ))]
297- Any[Key ((2 , 1 )), Any[Key ((2 , 2 )), NamedGraphs . Key{Tuple{Int64, Int64}}[Key ((3 , 1 )), Key ((3 , 2 ))]]]
296+ Key{Tuple{Int64, Int64}}[Key ((1 , 1 )), Key ((1 , 2 ))]
297+ Any[Key ((2 , 1 )), Any[Key ((2 , 2 )), Key{Tuple{Int64, Int64}}[Key ((3 , 1 )), Key ((3 , 2 ))]]]
298298
299299julia> Z̃ = contract (Z, (1 , 1 ) => (2 , 1 ));
300300
0 commit comments