@@ -563,9 +563,13 @@ def test_basic(self, dtype, n, norm):
563563
564564 result = dpnp .fft .hfft (ia , n = n , norm = norm )
565565 expected = numpy .fft .hfft (a , n = n , norm = norm )
566- # check_only_type_kind=True since NumPy always returns float64
567- # but dpnp return float32 if input is float32
568- assert_dtype_allclose (result , expected , check_only_type_kind = True )
566+ # TODO: change to the commented line when mkl_fft-2.0.0 is released
567+ # and being used with Intel NumPy >= 2.0.0
568+ flag = True
569+ # flag = True if numpy_version() < "2.0.0" else False
570+ assert_dtype_allclose (
571+ result , expected , factor = 24 , check_only_type_kind = flag
572+ )
569573
570574 @pytest .mark .parametrize (
571575 "dtype" , get_all_dtypes (no_none = True , no_complex = True )
@@ -579,7 +583,7 @@ def test_inverse(self, dtype, n, norm):
579583 result = dpnp .fft .ihfft (ia , n = n , norm = norm )
580584 expected = numpy .fft .ihfft (a , n = n , norm = norm )
581585 flag = True if numpy_version () < "2.0.0" else False
582- assert_dtype_allclose (result , expected , check_only_type_kind = True )
586+ assert_dtype_allclose (result , expected , check_only_type_kind = flag )
583587
584588 def test_error (self ):
585589 a = dpnp .ones (11 )
@@ -600,14 +604,16 @@ class TestIrfft:
600604 @pytest .mark .parametrize ("n" , [None , 5 , 18 ])
601605 @pytest .mark .parametrize ("norm" , [None , "backward" , "forward" , "ortho" ])
602606 def test_basic (self , dtype , n , norm ):
603- a = generate_random_numpy_array (11 )
607+ a = generate_random_numpy_array (11 , dtype = dtype )
604608 ia = dpnp .array (a )
605609
606610 result = dpnp .fft .irfft (ia , n = n , norm = norm )
607611 expected = numpy .fft .irfft (a , n = n , norm = norm )
608- # check_only_type_kind=True since NumPy always returns float64
609- # but dpnp return float32 if input is float32
610- assert_dtype_allclose (result , expected , check_only_type_kind = True )
612+ # TODO: change to the commented line when mkl_fft-2.0.0 is released
613+ # and being used with Intel NumPy >= 2.0.0
614+ flag = True
615+ # flag = True if numpy_version() < "2.0.0" else False
616+ assert_dtype_allclose (result , expected , check_only_type_kind = flag )
611617
612618 @pytest .mark .parametrize ("dtype" , get_complex_dtypes ())
613619 @pytest .mark .parametrize ("n" , [None , 5 , 8 ])
@@ -771,8 +777,11 @@ def test_float16(self):
771777
772778 expected = numpy .fft .rfft (a )
773779 result = dpnp .fft .rfft (ia )
774- # check_only_type_kind=True since Intel NumPy returns complex128
775- assert_dtype_allclose (result , expected , check_only_type_kind = True )
780+ # TODO: change to the commented line when mkl_fft-2.0.0 is released
781+ # and being used with Intel NumPy >= 2.0.0
782+ flag = True
783+ # flag = True if numpy_version() < "2.0.0" else False
784+ assert_dtype_allclose (result , expected , check_only_type_kind = flag )
776785
777786 @testing .with_requires ("numpy>=2.0.0" )
778787 @pytest .mark .parametrize ("xp" , [numpy , dpnp ])
@@ -954,7 +963,8 @@ def test_1d_array(self):
954963
955964 result = dpnp .fft .irfftn (ia )
956965 expected = numpy .fft .irfftn (a )
957- # TODO: change to the commented line when mkl_fft-gh-180 is merged
966+ # TODO: change to the commented line when mkl_fft-2.0.0 is released
967+ # and being used with Intel NumPy >= 2.0.0
958968 flag = True
959969 # flag = True if numpy_version() < "2.0.0" else False
960970 assert_dtype_allclose (result , expected , check_only_type_kind = flag )
0 commit comments