@@ -19,9 +19,10 @@ function LinearAlgebra.ldiv!(H::HessenbergMatrix, B::AbstractVecOrMat)
1919 lmul! (G, view (Hd, 1 : n, i: n))
2020 lmul! (G, B)
2121 end
22- ldiv! (UpperTriangular (Hd), B)
22+ LinearAlgebra . ldiv! (UpperTriangular (Hd), B)
2323end
24- (\ )(H:: HessenbergMatrix , B:: AbstractVecOrMat ) = ldiv! (copy (H), copy (B))
24+ LinearAlgebra.:\ (H:: HessenbergMatrix , B:: AbstractVecOrMat ) =
25+ LinearAlgebra. ldiv! (copy (H), copy (B))
2526
2627# Hessenberg factorization
2728struct HessenbergFactorization{T,S<: StridedMatrix ,U} <: Factorization{T}
3233Base. copy (HF:: HessenbergFactorization{T,S,U} ) where {T,S,U} =
3334 HessenbergFactorization {T,S,U} (copy (HF. data), copy (HF. τ))
3435
35- function _hessenberg ! (A:: StridedMatrix{T} ) where {T}
36+ function hessenberg ! (A:: StridedMatrix{T} ) where {T}
3637 n = LinearAlgebra. checksquare (A)
3738 τ = Vector {Householder{T}} (undef, n - 1 )
3839 for i = 1 : n- 1
@@ -45,7 +46,6 @@ function _hessenberg!(A::StridedMatrix{T}) where {T}
4546 end
4647 return HessenbergFactorization {T,typeof(A),eltype(τ)} (A, τ)
4748end
48- hessenberg! (A:: StridedMatrix ) = _hessenberg! (A)
4949
5050Base. size (H:: HessenbergFactorization , args... ) = size (H. data, args... )
5151
@@ -57,6 +57,8 @@ function Base.getproperty(F::HessenbergFactorization, s::Symbol)
5757 end
5858end
5959
60+ Base. propertynames (F:: HessenbergFactorization ) = (fieldnames (typeof (F))... , :H )
61+
6062# Schur
6163struct Schur{T,S<: StridedMatrix } <: Factorization{T}
6264 data:: S
@@ -165,7 +167,7 @@ function _schur!(
165167
166168 return Schur {T,typeof(HH)} (HH, τ)
167169end
168- schur! (A:: StridedMatrix ; kwargs... ) = _schur! (_hessenberg ! (A); kwargs... )
170+ schur! (A:: StridedMatrix ; kwargs... ) = _schur! (hessenberg ! (A); kwargs... )
169171
170172function singleShiftQR! (
171173 HH:: StridedMatrix ,
0 commit comments