|
| 1 | +""" |
| 2 | + Jordan <: Factorization |
| 3 | +
|
| 4 | +Jordan canonical form of a square matrix `A = VJV⁻¹`. This |
| 5 | +is the return type of [`jordan`](@ref), the corresponding Jordan factorization function. |
| 6 | +
|
| 7 | +The individual components of the factorization `F::Jordan` can be accessed via [`getfield`](@ref): |
| 8 | +
|
| 9 | +| Component | Description | |
| 10 | +|:----------|:-----------------------------| |
| 11 | +| `F.V` | `V` generalized eigenvectors | |
| 12 | +| `F.J` | `J` Jordan normal form | |
| 13 | +
|
| 14 | +Iterating the factorization produces the components `F.V` and `F.J`. |
| 15 | +
|
| 16 | +# Examples |
| 17 | +```jldoctest |
| 18 | +julia> A = [5 4 2 1; 0 1 -1 -1; -1 -1 3 0; 1 1 -1 2//1] |
| 19 | +
|
| 20 | +julia> λ = [1, 2, 4, 4//1] # you will almost certainly need extremely accurate eigenvalues to proceed |
| 21 | +
|
| 22 | +julia> F = jordan(A, λ) |
| 23 | +Jordan{Rational{Int64}, Matrix{Rational{Int64}}, Matrix{Rational{Int64}}} |
| 24 | +Generalized eigenvectors: |
| 25 | +4×4 Matrix{Rational{Int64}}: |
| 26 | + 1 1 -1 -1 |
| 27 | + -1 -1 0 0 |
| 28 | + 0 0 1 0 |
| 29 | + 0 1 -1 0 |
| 30 | +Jordan normal form: |
| 31 | +4×4 Matrix{Rational{Int64}}: |
| 32 | + 1 0 0 0 |
| 33 | + 0 2 0 0 |
| 34 | + 0 0 4 1 |
| 35 | + 0 0 0 4 |
| 36 | +
|
| 37 | +julia> A*F.V == F.V*F.J |
| 38 | +true |
| 39 | +
|
| 40 | +julia> V, J = jordan(A, λ); # destructuring via iteration |
| 41 | +
|
| 42 | +julia> V == F.V && J == F.J |
| 43 | +true |
| 44 | +``` |
| 45 | +""" |
| 46 | +struct Jordan{T, R <: AbstractMatrix{T}, S <: AbstractMatrix{T}} <: Factorization{T} |
| 47 | + V::R |
| 48 | + J::S |
| 49 | +end |
| 50 | + |
| 51 | +Jordan{T}(V::AbstractMatrix, J::AbstractMatrix) where T = Jordan(convert(AbstractMatrix{T}, V), convert(AbstractMatrix{T}, J)) |
| 52 | +Jordan{T}(F::Jordan) where T = Jordan{T}(F.V, F.J) |
| 53 | + |
| 54 | +iterate(F::Jordan) = (F.V, Val(:J)) |
| 55 | +iterate(F::Jordan, ::Val{:J}) = (F.J, Val(:done)) |
| 56 | +iterate(F::Jordan, ::Val{:done}) = nothing |
| 57 | + |
| 58 | +function show(io::IO, mime::MIME{Symbol("text/plain")}, F::Jordan) |
| 59 | + summary(io, F); println(io) |
| 60 | + println(io, "Generalized eigenvectors:") |
| 61 | + show(io, mime, F.V) |
| 62 | + println(io, "\nJordan normal form:") |
| 63 | + show(io, mime, F.J) |
| 64 | +end |
| 65 | + |
| 66 | +# dangerous because Jordan blocks are unstable with respect to small perturbations |
| 67 | +jordan(A::AbstractMatrix) = jordan(A, eigvals(A)) |
| 68 | + |
| 69 | +function jordan(A::AbstractMatrix{S}, λ::AbstractVector{T}) where {S, T} |
| 70 | + V = promote_type(S, T) |
| 71 | + jordan(convert(AbstractMatrix{V}, A), convert(AbstractVector{V}, λ)) |
| 72 | +end |
| 73 | + |
| 74 | +function jordan(A::AbstractMatrix{T}, λ::AbstractVector{T}) where T |
| 75 | + PLEP, B = block_diagonalize(A, λ) |
| 76 | + F, J = block_diagonal_to_jordan(B) |
| 77 | + V = PLEP*F |
| 78 | + return Jordan(V, J) |
| 79 | +end |
| 80 | + |
| 81 | +function triangular_to_psychologically_block_diagonal(U::UpperTriangular{T, <: AbstractMatrix{T}}) where T |
| 82 | + n = checksquare(U) |
| 83 | + R = deepcopy(U) |
| 84 | + EACC = UpperTriangular(Matrix{T}(I, n, n)) |
| 85 | + # note that this is sensitive to the order of conjugation. |
| 86 | + for j in 2:n |
| 87 | + for i in j-1:-1:1 |
| 88 | + if R[i, i] != R[j, j] |
| 89 | + E = UpperTriangular(Matrix{T}(I, n, n)) |
| 90 | + E[i, j] = R[i, j]/(R[j, j] - R[i, i]) |
| 91 | + R = E\R*E |
| 92 | + EACC = EACC*E |
| 93 | + end |
| 94 | + end |
| 95 | + end |
| 96 | + return EACC, R |
| 97 | +end |
| 98 | + |
| 99 | +function psychologically_block_diagonal_to_block_diagonal(R::UpperTriangular{T, <: AbstractMatrix{T}}) where T |
| 100 | + p = sortperm(diag(R)) |
| 101 | + n = length(p) |
| 102 | + P = Matrix{Int}(I, n, n)[:, p] |
| 103 | + B = R[p, p] |
| 104 | + P, B |
| 105 | +end |
| 106 | + |
| 107 | +function triangular_to_block_diagonal(U::UpperTriangular{T, <: AbstractMatrix{T}}) where T |
| 108 | + E, R = triangular_to_psychologically_block_diagonal(U) |
| 109 | + p = sortperm(diag(R)) |
| 110 | + E[:, p], R[p, p] |
| 111 | +end |
| 112 | + |
| 113 | +function block_diagonalize(A::AbstractMatrix{T}, λ::AbstractVector{T}) where T |
| 114 | + F = lulinv(A, λ) |
| 115 | + PLEP, B = triangular_to_block_diagonal(UpperTriangular(F.factors)) |
| 116 | + lmul!(UnitLowerTriangular(F.factors), PLEP) |
| 117 | + F.P*PLEP, B |
| 118 | +end |
| 119 | + |
| 120 | +function determine_block_sizes(B::AbstractMatrix{T}) where T |
| 121 | + n = checksquare(B) |
| 122 | + if n == 1 |
| 123 | + m = [1] |
| 124 | + return m |
| 125 | + else |
| 126 | + m = Int[] |
| 127 | + i = 1 |
| 128 | + while i < n |
| 129 | + t = 1 |
| 130 | + while (i < n-1) && (B[i, i] == B[i+1, i+1]) |
| 131 | + i += 1 |
| 132 | + t += 1 |
| 133 | + end |
| 134 | + if i == n-1 |
| 135 | + if B[i, i] == B[i+1, i+1] |
| 136 | + t += 1 |
| 137 | + push!(m, t) |
| 138 | + else |
| 139 | + push!(m, t) |
| 140 | + push!(m, 1) |
| 141 | + end |
| 142 | + else |
| 143 | + push!(m, t) |
| 144 | + end |
| 145 | + i += 1 |
| 146 | + end |
| 147 | + return m |
| 148 | + end |
| 149 | +end |
| 150 | + |
| 151 | +function block_diagonal_to_jordan(B::Matrix{T}) where T |
| 152 | + n = checksquare(B) |
| 153 | + m = determine_block_sizes(B) |
| 154 | + cm = cumsum(m) |
| 155 | + pushfirst!(cm, 0) |
| 156 | + F = zeros(T, n, n) |
| 157 | + J = zeros(T, n, n) |
| 158 | + for i in 1:length(m) |
| 159 | + ir = cm[i]+1:cm[i+1] |
| 160 | + FB, JB = upper_triangular_block_to_jordan_blocks(B[ir, ir]) |
| 161 | + F[ir, ir] .= FB |
| 162 | + J[ir, ir] .= JB |
| 163 | + end |
| 164 | + return F, J |
| 165 | +end |
| 166 | + |
| 167 | +# Contract: B_{i, j} = 0 for i > j. B_{i, i} = B_{j, j} for all i ≠ j. |
| 168 | +function upper_triangular_block_to_jordan_blocks(B::Matrix{T}) where T |
| 169 | + n = checksquare(B) |
| 170 | + J = deepcopy(B) |
| 171 | + FACC = Matrix{T}(I, n, n) |
| 172 | + for j in 2:n |
| 173 | + # In column j, we shall introduce zeros in any row with a 1 in the {i, i+1} position. |
| 174 | + F = Matrix{T}(I, n, n) |
| 175 | + for i in 1:j-2 |
| 176 | + if !iszero(J[i, i+1]) |
| 177 | + F[i+1, j] = -J[i, j] |
| 178 | + end |
| 179 | + end |
| 180 | + J = F\J*F |
| 181 | + FACC = FACC*F |
| 182 | + while count(!iszero, J[1:j-1, j]) > 1 |
| 183 | + # Next, we identify the first and next nonzeros in the last column. By the first step, they are across from the last row of a Jordan block. |
| 184 | + i1 = 1 |
| 185 | + while i1 < j |
| 186 | + if !iszero(J[i1, j]) |
| 187 | + break |
| 188 | + else |
| 189 | + i1 += 1 |
| 190 | + end |
| 191 | + end |
| 192 | + i2 = i1+1 |
| 193 | + while i2 < j |
| 194 | + if !iszero(J[i2, j]) |
| 195 | + break |
| 196 | + else |
| 197 | + i2 += 1 |
| 198 | + end |
| 199 | + end |
| 200 | + # With i1 and i2, we find the sizes of the corresponding Jordan blocks, s and t. |
| 201 | + i1s = i1 |
| 202 | + while i1s > 1 |
| 203 | + if iszero(J[i1s-1, i1s]) |
| 204 | + break |
| 205 | + else |
| 206 | + i1s -= 1 |
| 207 | + end |
| 208 | + end |
| 209 | + i2s = i2 |
| 210 | + while i2s > 1 |
| 211 | + if iszero(J[i2s-1, i2s]) |
| 212 | + break |
| 213 | + else |
| 214 | + i2s -= 1 |
| 215 | + end |
| 216 | + end |
| 217 | + i1r = i1s:i1 |
| 218 | + i2r = i2s:i2 |
| 219 | + s = length(i1r) |
| 220 | + t = length(i2r) |
| 221 | + # Eliminate one of the nonzeros or the other. |
| 222 | + if s ≤ t |
| 223 | + # eliminate α |
| 224 | + F = Matrix{T}(I, n, n) |
| 225 | + α = J[i1, j] |
| 226 | + β = J[i2, j] |
| 227 | + γ = α/β |
| 228 | + F[i1r, i2-s+1:i2] .= Matrix{T}(γ*I, s, s) |
| 229 | + J = F\J*F |
| 230 | + FACC = FACC*F |
| 231 | + else |
| 232 | + # eliminate β |
| 233 | + F = Matrix{T}(I, n, n) |
| 234 | + α = J[i1, j] |
| 235 | + β = J[i2, j] |
| 236 | + γ = β/α |
| 237 | + F[i2r, i1-t+1:i1] .= Matrix{T}(γ*I, t, t) |
| 238 | + J = F\J*F |
| 239 | + FACC = FACC*F |
| 240 | + end |
| 241 | + end |
| 242 | + # Next, we must permute to get the final nonzero to the bottom, if there is one at all. |
| 243 | + i1 = 1 |
| 244 | + while i1 < j |
| 245 | + if !iszero(J[i1, j]) |
| 246 | + break |
| 247 | + else |
| 248 | + i1 += 1 |
| 249 | + end |
| 250 | + end |
| 251 | + if i1 < j-1 |
| 252 | + # With i1, we find the size of the corresponding Jordan block, s. |
| 253 | + i1s = i1 |
| 254 | + while i1s > 1 |
| 255 | + if iszero(J[i1s-1, i1s]) |
| 256 | + break |
| 257 | + else |
| 258 | + i1s -= 1 |
| 259 | + end |
| 260 | + end |
| 261 | + i1r = i1s:i1 |
| 262 | + s = length(i1r) |
| 263 | + p = [1:i1s-1; i1+1:j-1; i1r; j:n] |
| 264 | + #P = Matrix{T}(I, n, n)[:, p] |
| 265 | + #J = P'J*P |
| 266 | + #FACC = FACC*P |
| 267 | + J = J[p, p] |
| 268 | + FACC = FACC[:, p] |
| 269 | + end |
| 270 | + # Finally, we must scale off the nonzero entry to 1 to get it to conform to a Jordan block. |
| 271 | + if !iszero(J[j-1, j]) |
| 272 | + F = Matrix{T}(I, n, n) |
| 273 | + F[j, j] = inv(J[j-1, j]) |
| 274 | + J = F\J*F |
| 275 | + FACC = FACC*F |
| 276 | + end |
| 277 | + end |
| 278 | + return FACC, J |
| 279 | +end |
0 commit comments