-
Notifications
You must be signed in to change notification settings - Fork 5
Open
Description
⚡ PERFORMANCE TESTING
Priority: HIGH - Performance Validation
Problem
No performance testing framework to validate system capacity, identify bottlenecks, or ensure SLA compliance under load.
Solution
Implement comprehensive performance testing using locust and automated benchmarking.
Load Testing Framework
# tests/performance/locustfile.py
from locust import HttpUser, task, between
import json
class ConversationAnalysisUser(HttpUser):
wait_time = between(1, 3)
def on_start(self):
# Setup authentication
self.headers = {"Authorization": "Bearer test-api-key"}
@task(3)
def analyze_conversation(self):
payload = {
"messages": [
{"role": "user", "content": "I'm feeling stressed about work"},
{"role": "assistant", "content": "I understand. Can you tell me more?"}
],
"config": {"mcts_iterations": 2, "num_branches": 2}
}
with self.client.post(
"/api/analyze",
json=payload,
headers=self.headers,
catch_response=True
) as response:
if response.status_code == 200:
result = response.json()
if "best_response" in result:
response.success()
else:
response.failure("Missing best_response")
else:
response.failure(f"HTTP {response.status_code}")
@task(1)
def health_check(self):
self.client.get("/health")
# Performance test scenarios
class StressTest(ConversationAnalysisUser):
# High load scenario
wait_time = between(0.1, 0.5)
class SpikeTest(ConversationAnalysisUser):
# Spike load scenario
wait_time = between(0, 0.1)Automated Benchmarks
# tests/performance/benchmarks.py
import asyncio
import time
import statistics
from app.services.mcts.algorithm import MCTSAlgorithm
class PerformanceBenchmarks:
async def benchmark_mcts_algorithm(self):
"""Benchmark MCTS algorithm performance"""
algorithm = MCTSAlgorithm()
test_conversation = self._create_test_conversation()
times = []
for _ in range(10):
start = time.time()
result = await algorithm.run(test_conversation, self._get_config())
end = time.time()
times.append(end - start)
return {
"mean_time": statistics.mean(times),
"median_time": statistics.median(times),
"p95_time": self._percentile(times, 95),
"p99_time": self._percentile(times, 99)
}
async def benchmark_llm_service(self):
"""Benchmark LLM service performance"""
# Test unified evaluation performance
pass
async def benchmark_cache_performance(self):
"""Benchmark semantic cache hit rates"""
# Test cache performance under load
passImplementation Steps
- Setup Locust performance testing framework
- Create realistic load test scenarios
- Implement automated benchmarking
- Add performance regression detection
- Setup performance monitoring dashboards
- Define SLA thresholds and alerts
Test Scenarios
-
Load Testing
- Normal traffic patterns
- Sustained load capacity
- Resource utilization
-
Stress Testing
- Peak traffic handling
- Breaking point identification
- Recovery behavior
-
Spike Testing
- Sudden traffic spikes
- Auto-scaling response
- Performance degradation
Performance SLAs
- Response Time: P95 < 5 seconds for analysis
- Throughput: Support 100 concurrent users
- Error Rate: < 1% under normal load
- Availability: 99.9% uptime
Acceptance Criteria
- Comprehensive load testing suite
- Automated performance benchmarks
- Performance regression detection
- SLA validation and monitoring
- CI/CD performance gates
- Performance optimization recommendations
Effort: Medium (3-4 days)