-
Notifications
You must be signed in to change notification settings - Fork 5
Open
Description
🚀 SEMANTIC CACHE INTEGRATION
Priority: MEDIUM - Performance Optimization
Problem
Sophisticated semantic cache exists but isn't fully integrated into MCTS algorithm. Missing 60-80% potential performance improvement.
Current State: Cache check exists in algorithm.py:114-124 but not properly integrated into node expansion.
Solution
Complete semantic cache integration with multi-level caching and partial hit optimization.
Enhanced Cache Integration
# In algorithm.py _expand_and_simulate()
async def _expand_and_simulate(self, node: MCTSNode, config: MCTSConfig):
# Multi-level cache check
cache_results = await self.semantic_cache.get_multilevel(
exact_messages=extended_messages,
similar_threshold=0.85,
domain=config.domain.name if config.domain else "general"
)
if cache_results.exact_hit:
# Use cached result directly
return cache_results.result
elif cache_results.similar_hits:
# Use similar result as starting point
return await self._refine_cached_result(cache_results.best_match)
else:
# Generate new result and cache it
result = await self._generate_new_result(extended_messages, config)
await self.semantic_cache.store(extended_messages, result, config.domain)
return resultCache Hit Rate Optimization
class SemanticCacheOptimizer:
async def optimize_cache_strategy(self, conversation_patterns: List[Dict]):
"""Optimize cache parameters based on usage patterns"""
# Analyze conversation similarity patterns
# Adjust similarity thresholds dynamically
# Implement cache warming for common patterns
pass
async def precompute_common_branches(self, domain: str):
"""Pre-compute responses for common conversation patterns"""
common_patterns = await self._get_common_patterns(domain)
for pattern in common_patterns:
if not await self.cache.exists(pattern):
result = await self._compute_response(pattern)
await self.cache.store(pattern, result, domain)Implementation Steps
- Complete cache integration in MCTS node expansion
- Implement multi-level caching (exact + similarity)
- Add cache warming for common patterns
- Optimize similarity thresholds per domain
- Add cache hit rate monitoring
- Implement cache invalidation strategies
Expected Impact
- 60-80% performance improvement for repeated conversation patterns
- Reduced LLM API calls for similar conversations
- Lower latency for cache hits
- Cost savings on repeated analysis
Acceptance Criteria
- Cache hit rate > 40% for similar conversations
- Performance improvement > 60% for cached responses
- Cache hit rate monitoring dashboard
- Domain-specific cache optimization
- Graceful fallback when cache unavailable
Effort: Medium (3-5 days)