-
Notifications
You must be signed in to change notification settings - Fork 5
Open
Description
⚙️ ADAPTIVE MCTS PARAMETERS
Priority: MEDIUM - Algorithm Optimization
Problem
Fixed MCTS parameters (UCB1 exploration constant, branching factors) don't suit all conversation domains. One-size-fits-all approach suboptimal.
Current Issues:
- Hardcoded UCB1 exploration constant (1.414) in node.py:43-49
- Fixed branching factors and simulation depth
- No adaptation based on domain requirements or performance metrics
Solution
Make MCTS parameters configurable per domain with automatic optimization based on performance feedback.
Domain-Specific Parameter Configuration
# app/services/mcts/config.py (enhanced)
@dataclass
class MCTSConfig:
# Core MCTS parameters
exploration_constant: float = 1.414
branching_factor: int = 3
simulation_depth: int = 3
mcts_iterations: int = 10
# Resource constraints
max_tree_depth: int = 10
max_nodes: int = 1000
# Domain-specific optimizations
domain_name: str = "general"
confidence_threshold: float = 0.7
early_stopping_enabled: bool = True
@classmethod
def for_domain(cls, domain_name: str) -> 'MCTSConfig':
"""Get optimized parameters for specific domain"""
domain_configs = {
"emotional_intelligence": cls(
exploration_constant=1.414, # Standard exploration
branching_factor=3,
simulation_depth=3,
confidence_threshold=0.75
),
"technical_support": cls(
exploration_constant=1.0, # More conservative
branching_factor=2, # Focused responses
simulation_depth=4, # Deeper technical analysis
confidence_threshold=0.8
),
"sales": cls(
exploration_constant=1.8, # More exploration for creativity
branching_factor=4, # More response variety
simulation_depth=2, # Shorter interactions
confidence_threshold=0.6
),
"education": cls(
exploration_constant=1.2, # Balanced exploration
branching_factor=3,
simulation_depth=4, # Educational depth
confidence_threshold=0.8
)
}
return domain_configs.get(domain_name, cls())Adaptive Parameter Optimization
# app/services/mcts/parameter_optimizer.py
class MCTSParameterOptimizer:
def __init__(self):
self.performance_history = {}
self.optimization_window = 100 # Optimize every 100 requests
async def optimize_parameters(
self,
domain: str,
current_config: MCTSConfig,
performance_metrics: Dict[str, float]
) -> MCTSConfig:
"""
Optimize MCTS parameters based on performance feedback
"""
# Track performance over time
self._record_performance(domain, current_config, performance_metrics)
# Check if optimization is needed
if not self._should_optimize(domain):
return current_config
# Perform parameter optimization
optimized_config = await self._optimize_config(domain, current_config)
return optimized_config
def _optimize_config(self, domain: str, config: MCTSConfig) -> MCTSConfig:
"""
Use performance history to adjust parameters
"""
history = self.performance_history[domain]
# Adjust exploration constant based on quality vs diversity trade-off
if history.avg_quality < 0.7 and history.avg_diversity > 0.8:
# High diversity, low quality -> reduce exploration
config.exploration_constant *= 0.9
elif history.avg_quality > 0.8 and history.avg_diversity < 0.6:
# High quality, low diversity -> increase exploration
config.exploration_constant *= 1.1
# Adjust branching factor based on performance vs cost
if history.avg_cost > history.target_cost:
# Too expensive -> reduce branching
config.branching_factor = max(2, config.branching_factor - 1)
elif history.avg_quality > 0.8 and history.avg_cost < history.target_cost * 0.8:
# Good quality, low cost -> can afford more branching
config.branching_factor = min(5, config.branching_factor + 1)
return configDynamic Early Stopping
# app/services/mcts/early_stopping.py
class EarlyStoppingController:
def should_stop_early(
self,
iteration: int,
current_best_score: float,
score_history: List[float],
config: MCTSConfig
) -> bool:
"""
Determine if MCTS should stop early based on convergence
"""
if not config.early_stopping_enabled:
return False
# Stop if we've reached minimum iterations and score is stable
if iteration >= 3:
recent_scores = score_history[-3:]
if all(abs(score - current_best_score) < 0.05 for score in recent_scores):
return True
# Stop if we've exceeded confidence threshold
if current_best_score > config.confidence_threshold:
return True
return FalseUpdated MCTS Algorithm Integration
# app/services/mcts/algorithm.py (updated)
class MCTSAlgorithm:
def __init__(self, parameter_optimizer: MCTSParameterOptimizer = None):
self.parameter_optimizer = parameter_optimizer
self.early_stopping = EarlyStoppingController()
async def run(
self,
conversation: Conversation,
config: MCTSConfig,
domain: ConversationDomain = None
) -> MCTSResult:
# Use domain-specific configuration if provided
if domain:
config = MCTSConfig.for_domain(domain.get_config().name)
# Apply any runtime optimizations
if self.parameter_optimizer:
config = await self.parameter_optimizer.get_optimized_config(
domain.get_config().name, config
)
# Run MCTS with adaptive parameters
root = MCTSNode(conversation)
score_history = []
for iteration in range(config.mcts_iterations):
# Update exploration constant dynamically
dynamic_exploration = self._adjust_exploration_for_iteration(
config.exploration_constant, iteration, config.mcts_iterations
)
# Standard MCTS steps with dynamic parameters
node = await self._select_node(root, dynamic_exploration)
await self._expand_and_simulate(node, config)
self._backpropagate(node)
# Check for early stopping
current_score = root.get_best_child().avg_score
score_history.append(current_score)
if self.early_stopping.should_stop_early(
iteration, current_score, score_history, config
):
break
return self._create_result(root, config, len(score_history))Implementation Steps
- Create domain-specific parameter configurations
- Implement parameter optimization system
- Add early stopping based on convergence
- Update MCTS algorithm to use dynamic parameters
- Add performance tracking and feedback loop
- Create parameter tuning dashboard
Expected Benefits
- Optimized performance per domain with appropriate exploration/exploitation balance
- Cost reduction through early stopping and right-sized branching
- Quality improvement through domain-specific parameter tuning
- Adaptive behavior that improves over time
Acceptance Criteria
- Domain-specific parameter configurations
- Automatic parameter optimization based on performance
- Early stopping reduces unnecessary iterations
- Performance improvement > 20% per domain
- Parameter tuning dashboard for monitoring
Effort: Medium (4-6 days)