@@ -71,7 +71,6 @@ def __init__(
7171 ):
7272 super ().__init__ (name , ** kwargs )
7373
74-
7574 self .tau_x = tau_x
7675 self .sigma_pre = sigma_pre ## a pre-rectification scaling factor
7776 self .sigma_post = sigma_post ## a post-rectification scaling factor
@@ -110,7 +109,6 @@ def advance_state(self, t, dt):
110109 key , skey = random .split (self .key .get (), 2 )
111110 eps_post = random .normal (skey , shape = self .x .get ().shape ) ## post-rectifier distributional noise
112111
113- #x = _run_cell(dt, self.j_input.get(), self.j_recurrent.get(), self.x.get(), eps, self.tau_x, self.sigma_rec, integType=self.intgFlag)
114112 _step_fns = {
115113 0 : step_euler ,
116114 1 : step_rk2 ,
@@ -152,13 +150,16 @@ def help(cls): ## component help function
152150 "states" :
153151 {"x" : "Update to continuous noisy, leaky dynamics; value at time t" },
154152 "outputs" :
155- {"r" : "A linear rectifier applied to rate-coded dynamics; f(z)" },
153+ {"r" : "A linear rectifier applied to rate-coded dynamics; f(z)" ,
154+ "r_prime" : "Temporal derivative applied to rate-coded dynamics; f'(z)" },
156155 }
157156 hyperparams = {
158157 "n_units" : "Number of neuronal cells to model in this layer" ,
159158 "batch_size" : "Batch size dimension of this component" ,
160159 "tau_x" : "State time constant" ,
161- "sigma_pre" : "The non-zero degree/scale of (pre-rectification) noise to inject into this neuron"
160+ "act_fx" : "Type of rectification function to use" ,
161+ "sigma_pre" : "The non-zero degree/scale of pre-rectification noise to inject into this neuron" ,
162+ "sigma_post" : "The non-zero degree/scale of post-rectification noise to inject into this neuron"
162163 }
163164 info = {cls .__name__ : properties ,
164165 "compartments" : compartment_props ,
0 commit comments