The basic approach is the following:
graph LR
A[Observation data - dataframe w time, lat, lon] --> G{matchup obs to xarray}
B[Predictor data - xarray] --> G
G --> C[dataframe w obs data, abund or 0/1, and predictor variables]
C --> D{XGBoost - boosted regression tree - for modeling}
D --> E([Visualize - make maps of suitability])
D --> F([Feature Importance])
- Chesepeake Bay oxygen: Oxygen front
- Gulf of Maine squids: Shelf Science Squidsters
- Canary Current upwelling region sardines: FishTok Guinea
List all participants on the project. Here is a good space to share your personal goals for the hackweek and things you can help with.
| Name | Team | GitHub | Things I bring | Affiliation |
|---|---|---|---|---|
| Artem Dzhulai | NES | adzhulai | Python, Git, general oceanorgaphy | Univ of Rhode Island |
| Dante Horemans | Chesepeake | dantehoremans | R, Python, Fortran, ROMs, ML/AI, estuarine/coastal ecology | Virginia Institute of Marine Science |
| Eli Holmes | Floater | eeholmes | Project Helper; Git; Python; SDMs | NOAA; Univ of Wash; OceanHackWeek |
| Frederic Bonou | Canary Current | FREDERICBONOU | National Univ of Sciences, Technology, Engineering and Mathematics, Benin | |
| Jiang | Chesepeake | |||
| Jing Tan | Chesepeake | jit079 | Python, Git, Remote-sensing data, ML/AI | Scripps Institute of Oceanography |
| Natalie McCourt | NES | spacenatalie | Python, Git, netCDF | UMBC |
| Sajna Hussain | NES | Python, fisheries, SDMs | Oregon State Univ, CICOES | |
| Haley Synan | NES | hsynan | Python, ML, general oceanography | NOAA Fisheries/IBSS |
| Jamon Jordan | NES | justjamon | Python, seascapes, SDMs | Oregon State Univ, CEOAS |
We need observations of presence/absence, abundance, or level (oxygen) with date/time, lat, lon. We need a large number of points distributed across a variety of regions in our study regions.
Plan to explore PACE products.
- Light penetration. We'd need to compute.
XBoost
Optional: links to manuscripts or technical documents providing background information, context, or other relevant information.
- Sunday - organize and get on GitHub
- Tuesday - get our observation data together
- Wednesday - get our response data together
- Thursday - get XBoost working
- Friday - put presentation together
Build
mkdocs gh-deploy
First time make
pip install mkdocs mkdocstrings[python] mkdocs-material mkdocs-jupyter
pip install -e .
# mkdocs new .
mkdocs gh-deploy
I had to downgrade
pip install "pydantic<2"
Add a function
- add to existing file in
srcor add new file - add to docs/reference.md
- if added new file, edit
src/__init__.py
Add an example notebook
- add to existing file in
docs/examples - add to docs/index.md
- add to
mkdocs.yml
