|
1 | 1 | from ML import * |
2 | 2 |
|
| 3 | +print(ROBERTA_BASE_ENCODER) |
3 | 4 |
|
4 | | -def train( |
5 | | - batch_size: int = 32, |
6 | | - lr: float = 0.01, |
7 | | - test_split: float = 0.25, |
8 | | - optimizer=optim.Adam, |
9 | | - epochs: int = 5, |
10 | | - name: str = "", |
11 | | - lr_schedular=None, |
12 | | - transforms=None, |
13 | | -): |
14 | | - train_data_loader, test_data_loader, valid_data_loader = Load_Data( |
15 | | - Main_DL, |
16 | | - Valid_Loader, |
17 | | - [ |
18 | | - "/media/user/Main/Programmer-RD-AI/Programming/Learning/JS/NLP-Disaster-Tweets/ML/data/train.csv", |
19 | | - batch_size, |
20 | | - transforms, |
21 | | - ], |
22 | | - [ |
23 | | - "/media/user/Main/Programmer-RD-AI/Programming/Learning/JS/NLP-Disaster-Tweets/ML/data/test.csv", |
24 | | - 1, |
25 | | - ], |
26 | | - test_split, |
27 | | - 42, |
28 | | - ).ld() |
29 | | - model = TL().to(device) |
30 | | - optimizer = optimizer(model.parameters(), lr=lr) |
31 | | - criterion = nn.CrossEntropyLoss() |
32 | | - config = { |
33 | | - "model": model, |
34 | | - "criterion": criterion, |
35 | | - "optimizer": optimizer, |
36 | | - "learning_rate": lr, |
37 | | - } |
38 | | - Train( |
39 | | - model, |
40 | | - epochs, |
41 | | - config, |
42 | | - train_data_loader, |
43 | | - test_data_loader, |
44 | | - valid_data_loader, |
45 | | - criterion, |
46 | | - optimizer, |
47 | | - ).train(f"{name}") |
48 | 5 |
|
49 | | - |
50 | | -train( |
51 | | - transforms=Transformer().transform(), |
52 | | - batch_size=16, |
53 | | - lr=1e-3, |
54 | | - test_split=0.25, |
55 | | - optimizer=optim.Adam, |
56 | | - lr_schedular=None, |
57 | | - name=f"1e-3", |
58 | | -) |
59 | | -train( |
60 | | - transforms=Transformer().transform(), |
61 | | - batch_size=16, |
62 | | - lr=1e-4, |
63 | | - test_split=0.25, |
64 | | - optimizer=optim.Adam, |
65 | | - lr_schedular=None, |
66 | | - name=f"1e-4", |
67 | | -) |
68 | | -train( |
69 | | - transforms=Transformer().transform(), |
70 | | - batch_size=16, |
71 | | - lr=1e-5, |
72 | | - test_split=0.25, |
73 | | - optimizer=optim.Adam, |
74 | | - lr_schedular=None, |
75 | | - name=f"1e-5", |
76 | | -) |
77 | | -train( |
78 | | - transforms=Transformer().transform(), |
79 | | - batch_size=16, |
80 | | - lr=1e-6, |
81 | | - test_split=0.25, |
82 | | - optimizer=optim.Adam, |
83 | | - lr_schedular=None, |
84 | | - name=f"1e-6", |
85 | | -) |
86 | | -train( |
87 | | - transforms=Transformer().transform(), |
88 | | - batch_size=16, |
89 | | - lr=1e-7, |
90 | | - test_split=0.25, |
91 | | - optimizer=optim.Adam, |
92 | | - lr_schedular=None, |
93 | | - name=f"1e-7", |
94 | | -) |
| 6 | +train_data_loader, test_data_loader, valid_data_loader = Load_Data( |
| 7 | + Main_DL, |
| 8 | + Valid_Loader, |
| 9 | + [ |
| 10 | + "/media/user/Main/Programmer-RD-AI/Programming/Learning/JS/NLP-Disaster-Tweets/ML/data/train.csv", |
| 11 | + 16, |
| 12 | + Transformer().transform(), |
| 13 | + ], |
| 14 | + [ |
| 15 | + "/media/user/Main/Programmer-RD-AI/Programming/Learning/JS/NLP-Disaster-Tweets/ML/data/test.csv", |
| 16 | + 1, |
| 17 | + ], |
| 18 | + 0.125, |
| 19 | + 42, |
| 20 | +).ld() |
| 21 | +model = TL().to(device) |
| 22 | +optimizer = optim.Adam(model.parameters(), lr=1e-5) |
| 23 | +criterion = nn.CrossEntropyLoss() |
| 24 | +config = { |
| 25 | + "model": model, |
| 26 | + "criterion": criterion, |
| 27 | + "optimizer": optimizer, |
| 28 | + "learning_rate": 1e-5, |
| 29 | +} |
| 30 | +Train( |
| 31 | + model, |
| 32 | + 25, |
| 33 | + config, |
| 34 | + train_data_loader, |
| 35 | + test_data_loader, |
| 36 | + valid_data_loader, |
| 37 | + criterion, |
| 38 | + optimizer, |
| 39 | +).train(f"final") |
0 commit comments