Skip to content

Commit 583d5a7

Browse files
Merge pull request #383 from ArnoStrouwen/canon
canonize docs
2 parents 6df2b9b + 62d50df commit 583d5a7

File tree

6 files changed

+18
-15
lines changed

6 files changed

+18
-15
lines changed

README.md

Lines changed: 8 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,19 +1,22 @@
11
# DataDrivenDiffEq.jl
22

3-
[![Build Status](https://github.com/SciML/DataDrivenDiffEq.jl/workflows/CI/badge.svg)](https://github.com/SciML/DataDrivenDiffEq.jl/actions?query=workflow%3ACI)
4-
[![pkgeval](https://juliahub.com/docs/DataDrivenDiffEq/pkgeval.svg)](https://juliahub.com/ui/Packages/DataDrivenDiffEq/EZBji)
5-
[![codecov.io](http://codecov.io/github/SciML/DataDrivenDiffEq.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaDiffEq/DataDrivenDiffEq.jl?branch=master)
6-
[![DOI](https://zenodo.org/badge/212827023.svg)](https://zenodo.org/badge/latestdoi/212827023)
3+
[![Join the chat at https://julialang.zulipchat.com #sciml-bridged](https://img.shields.io/static/v1?label=Zulip&message=chat&color=9558b2&labelColor=389826)](https://julialang.zulipchat.com/#narrow/stream/279055-sciml-bridged)
74
[![Global Docs](https://img.shields.io/badge/docs-SciML-blue.svg)](https://docs.sciml.ai/DataDrivenDiffEq/stable/)
5+
[![DOI](https://zenodo.org/badge/212827023.svg)](https://zenodo.org/badge/latestdoi/212827023)
6+
7+
[![codecov](https://codecov.io/gh/SciML/DataDrivenDiffEq.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/SciML/DataDrivenDiffEq.jl)
8+
[![Build Status](https://github.com/SciML/DataDrivenDiffEq.jl/workflows/CI/badge.svg)](https://github.com/SciML/DataDrivenDiffEq.jl/actions?query=workflow%3ACI)
9+
810
[![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac)
11+
[![SciML Code Style](https://img.shields.io/static/v1?label=code%20style&message=SciML&color=9558b2&labelColor=389826)](https://github.com/SciML/SciMLStyle)
912

1013
DataDrivenDiffEq.jl is a package in the SciML ecosystem for data-driven differential equation
1114
structural estimation and identification. These tools include automatically discovering equations
1215
from data and using this to simulate perturbed dynamics.
1316

1417
For information on using the package,
1518
[see the stable documentation](https://docs.sciml.ai/DataDrivenDiffEq/stable/). Use the
16-
[in-development documentation](https://datadriven.sciml.ai/dev/) for the version of
19+
[in-development documentation](https://docs.sciml.ai/DataDrivenDiffEq/dev/) for the version of
1720
the documentation which contains the un-released features.
1821

1922
## Quick Demonstration

docs/examples/8_symbolic_regression.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
# Hence, the performance might differ and depends strongly on the hyperparameters of the optimization.
77
# This example might not recover the groundtruth, but is showing off the use within `DataDrivenDiffEq.jl`.
88
#
9-
# DataDrivenDiffEq offers an interface to [`SymbolicRegression.jl`](https://github.com/MilesCranmer/SymbolicRegression.jl) to infer more complex functions. To
9+
# DataDrivenDiffEq offers an interface to [`SymbolicRegression.jl`](https://docs.sciml.ai/SymbolicRegression/stable/) to infer more complex functions. To
1010
# use it, simply load a sufficient version of `SymbolicRegression` (currently we support version >= 0.9).
1111

1212
using DataDrivenDiffEq

docs/src/citations.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ If you are using `DataDrivenDiffEq.jl` for research, please cite
1515
}
1616
```
1717

18-
If you are using the [SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl) API, please cite
18+
If you are using the [SymbolicRegression.jl](https://docs.sciml.ai/SymbolicRegression/stable/) API, please cite
1919

2020
```bibtex
2121
@software{pysr,

docs/src/index.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# DataDrivenDiffEq.jl
22

3-
[DataDrivenDiffEq.jl](https://github.com/SciML/DataDrivenDiffEq.jl) is a package for finding the governing equations of motion automatically from a dataset.
3+
**DataDrivenDiffEq.jl** is a package for finding the governing equations of motion automatically from a dataset.
44

55
The methods in this package take in data and return the differential equation model which generated the data. A known model is not required as input. These methods can estimate equation-free and equation-based models for discrete and continuous differential equations.
66

@@ -10,7 +10,7 @@ There are two main types of estimation, depending on if you need the result to b
1010

1111
## Package Overview
1212

13-
[DataDrivenDiffEq.jl](https://github.com/SciML/DataDrivenDiffEq.jl) currently implements the following algorithms for structural estimation and identification. Please note that all the algorithms have been unified under a single mathematical framework, so the interface might be a little different than what you expect.
13+
Currently, the following algorithms for structural estimation and identification are implemented. Please note that all the algorithms have been unified under a single mathematical framework, so the interface might be a little different than what you expect.
1414

1515
+ Dynamic Mode Decomposition (DMD)
1616
+ Extended Dynamic Mode Decomposition
@@ -23,6 +23,6 @@ There are two main types of estimation, depending on if you need the result to b
2323
To use [DataDrivenDiffEq.jl](https://github.com/SciML/DataDrivenDiffEq.jl), install via:
2424

2525
```julia
26-
]add DataDrivenDiffEq
27-
using DataDrivenDiffEq
26+
using Pkg
27+
Pkg.add("DataDrivenDiffEq")
2828
```

docs/src/solvers/common.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,8 +8,8 @@ The table below provides an overview, which class of algorithms support which cl
88
|:---------- | ---------- |:------------:|:------------:|:------------:|:------------:|
99
| [Koopman](@ref koopman_algorithms) | - | + | + | Optional |
1010
| [Sparse Regression](@ref sparse_optimization) | + | + | + | Necessary |
11-
| [EQSearch](@ref eqsearch_api) | + | + | + | No | [SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl)
12-
| [OccamNet](@ref occamnet_api) | + | + | + | No | [Flux.jl](https://github.com/FluxML/Flux.jl)
11+
| [EQSearch](@ref eqsearch_api) | + | + | + | No | [SymbolicRegression.jl](https://docs.sciml.ai/SymbolicRegression/stable/)
12+
| [OccamNet](@ref occamnet_api) | + | + | + | No | [Flux.jl](https://docs.sciml.ai/Flux.jl/stable/)
1313

1414
All of the above methods return a [`DataDrivenSolution`](@ref) if not enforced otherwise.
1515

docs/src/solvers/symbolic_regression.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,14 +5,14 @@
55
## [EQSearch](@id eqsearch_api)
66

77
!!! warning
8-
This feature requires the explicit loading of [SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl) in addition to `DataDrivenDiffEq`. It will _only_ be useable if loaded like:
8+
This feature requires the explicit loading of [SymbolicRegression.jl](https://docs.sciml.ai/SymbolicRegression/stable/) in addition to `DataDrivenDiffEq`. It will _only_ be useable if loaded like:
99
```julia
1010
using DataDrivenDiffEq
1111
using SymbolicRegression
1212
```
1313
Currently `DataDrivenDiffEq` supports version >= 0.9.
1414

15-
This algorithm wraps [SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl).
15+
This algorithm wraps [SymbolicRegression.jl](https://docs.sciml.ai/SymbolicRegression/stable/).
1616
### Symbolic Regression
1717
See the [tutorial](@ref symbolic_regression_simple).
1818

0 commit comments

Comments
 (0)