|
54 | 54 | estimator = ODEProblem(dudt, u0, tspan, ps)
|
55 | 55 | sol_ = solve(estimator, Tsit5(), saveat = 0.1)
|
56 | 56 | @test sol[:,:] ≈ sol_[:,:]
|
57 |
| - @test abs.(ps) ≈ abs.(Float64[-1/3 ; -1/3 ; -1.00 ; 2/3; 1.00 ;0.5 ;0.5 ; 1.0; 1.0; -1.0; 1.0]) |
| 57 | + @test abs.(ps) ≈ abs.(Float64[1/3, 1.0, 1/3, 2/3, 1, 0.5, 0.5, 1, 1, 1, 1]) atol = 1e-2 |
58 | 58 |
|
59 | 59 |
|
60 | 60 | @info "Michaelis-Menten-Kinetics"
|
|
90 | 90 | estimator = ODEProblem(dudt, u0, tspan, ps)
|
91 | 91 | sol_ = solve(estimator, Tsit5(), saveat = 0.1)
|
92 | 92 | @test isapprox(sol_[:,:], solution_1[:,:], atol = 1e-1)
|
93 |
| - @test abs.(ps) ≈ [1/3; 1.0; 0.2; 0.92] atol = 1e-1 |
| 93 | + @test abs.(ps) ≈ [1/3; 0.2; 1.0; 0.92] atol = 1e-1 |
94 | 94 |
|
95 | 95 | Ψ = ISINDy(X, DX, basis, STRRidge(1e-2), maxiter = 100, normalize = true)
|
96 | 96 | print_equations(Ψ, show_parameter = true)
|
|
101 | 101 | estimator = ODEProblem(dudt, u0, tspan, ps)
|
102 | 102 | sol_ = solve(estimator, Tsit5(), saveat = 0.1)
|
103 | 103 | @test isapprox(sol_[:,:], solution_1[:,:], atol = 1e-1)
|
104 |
| - @test abs.(ps) ≈ [1/3; 1.0; 0.2; 0.92] atol = 1e-1 |
| 104 | + @test abs.(ps) ≈ [1/3; 0.2; 1.0; 0.92] atol = 1e-1 |
105 | 105 |
|
106 | 106 | λs = exp10.(-3:0.1:-1)
|
107 | 107 | Ψ = ISINDy(X, DX, basis, λs ,STRRidge(1e-2), maxiter = 100, normalize = false)
|
|
113 | 113 | estimator = ODEProblem(dudt, u0, tspan, ps)
|
114 | 114 | sol_ = solve(estimator, Tsit5(), saveat = 0.1)
|
115 | 115 | @test isapprox(sol_[:,:], solution_1[:,:], atol = 1e-1)
|
116 |
| - @test abs.(ps) ≈ [1/3; 1.0; 0.2; 0.92] atol = 1e-1 |
| 116 | + @test abs.(ps) ≈ [1/3; 0.2; 1.0; 0.92] atol = 1e-1 |
117 | 117 | end
|
0 commit comments