Skip to content

Commit 8f44bde

Browse files
committed
changed discretize_full_functions to discretize_inner_functions
1 parent f82f497 commit 8f44bde

File tree

3 files changed

+9
-9
lines changed

3 files changed

+9
-9
lines changed

src/pinns_pde_solve.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1247,7 +1247,7 @@ function SciMLBase.symbolic_discretize(pde_system::PDESystem, discretization::Ph
12471247
end
12481248

12491249

1250-
function discretize_full_functions(pde_system::PDESystem, discretization::PhysicsInformedNN)
1250+
function discretize_inner_functions(pde_system::PDESystem, discretization::PhysicsInformedNN)
12511251
eqs = pde_system.eqs
12521252
bcs = pde_system.bcs
12531253

@@ -1490,7 +1490,7 @@ end
14901490

14911491
# Convert a PDE problem into an OptimizationProblem
14921492
function SciMLBase.discretize(pde_system::PDESystem, discretization::PhysicsInformedNN)
1493-
discretized_functions = discretize_full_functions(pde_system, discretization)
1493+
discretized_functions = discretize_inner_functions(pde_system, discretization)
14941494
f = OptimizationFunction(discretized_functions.full_loss_function, GalacticOptim.AutoZygote())
14951495
GalacticOptim.OptimizationProblem(f, discretized_functions.flat_initθ)
14961496
end

test/NNPDE_tests.jl

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -358,7 +358,7 @@ discretization = NeuralPDE.PhysicsInformedNN(chain,quasirandom_strategy;init_par
358358

359359
prob = NeuralPDE.discretize(pde_system,discretization)
360360
sym_prob = NeuralPDE.symbolic_discretize(pde_system,discretization)
361-
discretized_functions = NeuralPDE.discretize_full_functions(pde_system,discretization)
361+
discretized_functions = NeuralPDE.discretize_inner_functions(pde_system,discretization)
362362

363363
pde_inner_loss_functions = discretized_functions.pde_loss_functions
364364
bcs_inner_loss_functions = discretized_functions.bc_loss_functions
@@ -646,7 +646,7 @@ discretization = NeuralPDE.PhysicsInformedNN(chain,
646646

647647
@named pde_system = PDESystem(eq,bcs,domains,[x],[p(x)])
648648
prob = NeuralPDE.discretize(pde_system,discretization)
649-
discretized_functions = NeuralPDE.discretize_full_functions(pde_system,discretization)
649+
discretized_functions = NeuralPDE.discretize_inner_functions(pde_system,discretization)
650650

651651
pde_inner_loss_functions = discretized_functions.pde_loss_functions
652652
bcs_inner_loss_functions = discretized_functions.bc_loss_functions
@@ -741,7 +741,7 @@ additional_loss(discretization.phi, testθ, nothing)
741741
defaults=Dict([p => 1.0 for p in [σ_, ρ, β]]))
742742
prob = NeuralPDE.discretize(pde_system,discretization)
743743
sym_prob = NeuralPDE.symbolic_discretize(pde_system,discretization)
744-
discretized_functions = NeuralPDE.discretize_full_functions(pde_system,discretization)
744+
discretized_functions = NeuralPDE.discretize_inner_functions(pde_system,discretization)
745745
discretized_functions.full_loss_function([testθ;ones(3)], Float64[])
746746

747747
res = GalacticOptim.solve(prob, Optim.BFGS(); maxiters=6000)
@@ -869,7 +869,7 @@ discretization = NeuralPDE.PhysicsInformedNN(chain,strategy; initial_params=init
869869
@named pde_system = PDESystem(eq,bc,domain,[x,y],[u(x, y)])
870870
prob = NeuralPDE.discretize(pde_system,discretization)
871871
symprob = NeuralPDE.symbolic_discretize(pde_system,discretization)
872-
discretized_functions = NeuralPDE.discretize_full_functions(pde_system,discretization)
872+
discretized_functions = NeuralPDE.discretize_inner_functions(pde_system,discretization)
873873
discretized_functions.full_loss_function(initθ, Float64[])
874874

875875
res = GalacticOptim.solve(prob,ADAM(0.01),maxiters=500)

test/forward_tests.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ import ModelingToolkit: Interval
2525
discretization = NeuralPDE.PhysicsInformedNN(chain,strategy_;init_params = Float64[])
2626
@named pde_system = PDESystem(eq,bcs,domains,[x],[u(x)])
2727
prob = NeuralPDE.discretize(pde_system,discretization)
28-
discretized_functions = NeuralPDE.discretize_full_functions(pde_system,discretization)
28+
discretized_functions = NeuralPDE.discretize_inner_functions(pde_system,discretization)
2929

3030
eqs = pde_system.eqs
3131
bcs = pde_system.bcs
@@ -112,7 +112,7 @@ end
112112
@named pde_system = PDESystem(eq,bcs,domains,[x],[u(x)])
113113
sym_prob = SciMLBase.symbolic_discretize(pde_system, discretization)
114114
prob = NeuralPDE.discretize(pde_system,discretization)
115-
discretized_functions = NeuralPDE.discretize_full_functions(pde_system,discretization)
115+
discretized_functions = NeuralPDE.discretize_inner_functions(pde_system,discretization)
116116
inner_loss =discretized_functions.inner_pde_loss_functions[1]
117117
exact_u = π/(3*sqrt(3))
118118
@test inner_loss(ones(1,1), Float64[])[1] exact_u rtol = 1e-5
@@ -132,7 +132,7 @@ end
132132
@named pde_system = PDESystem(eqs, bcs, domains, [x], [u(x)])
133133
sym_prob = SciMLBase.symbolic_discretize(pde_system, discretization)
134134
prob = SciMLBase.discretize(pde_system, discretization)
135-
discretized_functions = NeuralPDE.discretize_full_functions(pde_system,discretization)
135+
discretized_functions = NeuralPDE.discretize_inner_functions(pde_system,discretization)
136136
inner_loss =discretized_functions.inner_pde_loss_functions[1]
137137
exact_u = 0
138138
@test inner_loss(ones(1,1), Float64[])[1] exact_u rtol = 1e-9

0 commit comments

Comments
 (0)