@@ -1762,7 +1762,7 @@ predict.bcfmodel <- function(object, X, Z, propensity = NULL, rfx_group_ids = NU
17621762 tau_num_obs <- tau_dim [1 ]
17631763 tau_num_samples <- tau_dim [3 ]
17641764 treatment_term <- matrix (NA_real_ , nrow = tau_num_obs , tau_num_samples )
1765- for (i in 1 : nrow(Z_train )) {
1765+ for (i in 1 : nrow(Z )) {
17661766 treatment_term [i ,] <- colSums(tau_hat [i ,,] * Z [i ,])
17671767 }
17681768 } else {
@@ -2020,6 +2020,7 @@ saveBCFModelToJson <- function(object){
20202020 jsonobj $ add_boolean(" has_rfx" , object $ model_params $ has_rfx )
20212021 jsonobj $ add_boolean(" has_rfx_basis" , object $ model_params $ has_rfx_basis )
20222022 jsonobj $ add_scalar(" num_rfx_basis" , object $ model_params $ num_rfx_basis )
2023+ jsonobj $ add_boolean(" multivariate_treatment" , object $ model_params $ multivariate_treatment )
20232024 jsonobj $ add_boolean(" adaptive_coding" , object $ model_params $ adaptive_coding )
20242025 jsonobj $ add_boolean(" internal_propensity_model" , object $ model_params $ internal_propensity_model )
20252026 jsonobj $ add_scalar(" num_gfr" , object $ model_params $ num_gfr )
@@ -2351,6 +2352,7 @@ createBCFModelFromJson <- function(json_object){
23512352 model_params [[" has_rfx_basis" ]] <- json_object $ get_boolean(" has_rfx_basis" )
23522353 model_params [[" num_rfx_basis" ]] <- json_object $ get_scalar(" num_rfx_basis" )
23532354 model_params [[" adaptive_coding" ]] <- json_object $ get_boolean(" adaptive_coding" )
2355+ model_params [[" multivariate_treatment" ]] <- json_object $ get_boolean(" multivariate_treatment" )
23542356 model_params [[" internal_propensity_model" ]] <- json_object $ get_boolean(" internal_propensity_model" )
23552357 model_params [[" num_gfr" ]] <- json_object $ get_scalar(" num_gfr" )
23562358 model_params [[" num_burnin" ]] <- json_object $ get_scalar(" num_burnin" )
@@ -2690,6 +2692,7 @@ createBCFModelFromCombinedJson <- function(json_object_list){
26902692 model_params [[" num_chains" ]] <- json_object_default $ get_scalar(" num_chains" )
26912693 model_params [[" keep_every" ]] <- json_object_default $ get_scalar(" keep_every" )
26922694 model_params [[" adaptive_coding" ]] <- json_object_default $ get_boolean(" adaptive_coding" )
2695+ model_params [[" multivariate_treatment" ]] <- json_object_default $ get_boolean(" multivariate_treatment" )
26932696 model_params [[" internal_propensity_model" ]] <- json_object_default $ get_boolean(" internal_propensity_model" )
26942697 model_params [[" probit_outcome_model" ]] <- json_object_default $ get_boolean(" probit_outcome_model" )
26952698
@@ -2916,6 +2919,7 @@ createBCFModelFromCombinedJsonString <- function(json_string_list){
29162919 model_params [[" num_covariates" ]] <- json_object_default $ get_scalar(" num_covariates" )
29172920 model_params [[" num_chains" ]] <- json_object_default $ get_scalar(" num_chains" )
29182921 model_params [[" keep_every" ]] <- json_object_default $ get_scalar(" keep_every" )
2922+ model_params [[" multivariate_treatment" ]] <- json_object_default $ get_boolean(" multivariate_treatment" )
29192923 model_params [[" adaptive_coding" ]] <- json_object_default $ get_boolean(" adaptive_coding" )
29202924 model_params [[" internal_propensity_model" ]] <- json_object_default $ get_boolean(" internal_propensity_model" )
29212925 model_params [[" probit_outcome_model" ]] <- json_object_default $ get_boolean(" probit_outcome_model" )
0 commit comments