|
| 1 | +# Demo of contrast computation function for BART |
| 2 | + |
| 3 | +# Load libraries |
| 4 | +from stochtree import BARTModel |
| 5 | +from sklearn.model_selection import train_test_split |
| 6 | +import numpy as np |
| 7 | + |
| 8 | +# Generate data |
| 9 | +n = 500 |
| 10 | +p = 5 |
| 11 | +rng = np.random.default_rng(1234) |
| 12 | +X = rng.uniform(low=0.0, high=1.0, size=(n, p)) |
| 13 | +W = rng.normal(loc=0.0, scale=1.0, size=(n, 1)) |
| 14 | +f_XW = np.where( |
| 15 | + ((0 <= X[:, 0]) & (X[:, 0] < 0.25)), |
| 16 | + -7.5 * W[:, 0], |
| 17 | + np.where( |
| 18 | + ((0.25 <= X[:, 0]) & (X[:, 0] < 0.5)), |
| 19 | + -2.5 * W[:, 0], |
| 20 | + np.where( |
| 21 | + ((0.5 <= X[:, 0]) & (X[:, 0] < 0.75)), |
| 22 | + 2.5 * W[:, 0], |
| 23 | + 7.5 * W[:, 0], |
| 24 | + ), |
| 25 | + ), |
| 26 | +) |
| 27 | +E_Y = f_XW |
| 28 | +snr = 2 |
| 29 | +y = E_Y + rng.normal(loc=0.0, scale=1.0, size=(n,)) * (np.std(E_Y) / snr) |
| 30 | + |
| 31 | +# Train-test split |
| 32 | +test_set_pct = 0.2 |
| 33 | +train_inds, test_inds = train_test_split( |
| 34 | + np.arange(n), test_size=test_set_pct, random_state=1234 |
| 35 | +) |
| 36 | +X_train = X[train_inds, :] |
| 37 | +X_test = X[test_inds, :] |
| 38 | +W_train = W[train_inds, :] |
| 39 | +W_test = W[test_inds, :] |
| 40 | +y_train = y[train_inds] |
| 41 | +y_test = y[test_inds] |
| 42 | +n_test = len(test_inds) |
| 43 | +n_train = len(train_inds) |
| 44 | + |
| 45 | +# Fit BART model |
| 46 | +bart_model = BARTModel() |
| 47 | +bart_model.sample( |
| 48 | + X_train=X_train, |
| 49 | + leaf_basis_train=W_train, |
| 50 | + y_train=y_train, |
| 51 | + num_gfr=10, |
| 52 | + num_burnin=0, |
| 53 | + num_mcmc=1000, |
| 54 | +) |
| 55 | + |
| 56 | +# Compute contrast posterior |
| 57 | +contrast_posterior_test = bart_model.compute_contrast( |
| 58 | + covariates_0=X_test, |
| 59 | + covariates_1=X_test, |
| 60 | + basis_0=np.zeros((n_test, 1)), |
| 61 | + basis_1=np.ones((n_test, 1)), |
| 62 | + type="posterior", |
| 63 | + scale="linear", |
| 64 | +) |
| 65 | + |
| 66 | +# Compute the same quantity via two predict calls |
| 67 | +y_hat_posterior_test_0 = bart_model.predict( |
| 68 | + covariates=X_test, |
| 69 | + basis=np.zeros((n_test, 1)), |
| 70 | + type="posterior", |
| 71 | + terms="y_hat", |
| 72 | + scale="linear", |
| 73 | +) |
| 74 | +y_hat_posterior_test_1 = bart_model.predict( |
| 75 | + covariates=X_test, |
| 76 | + basis=np.ones((n_test, 1)), |
| 77 | + type="posterior", |
| 78 | + terms="y_hat", |
| 79 | + scale="linear", |
| 80 | +) |
| 81 | +contrast_posterior_test_comparison = y_hat_posterior_test_1 - y_hat_posterior_test_0 |
| 82 | + |
| 83 | +# Compare results |
| 84 | +contrast_diff = contrast_posterior_test_comparison - contrast_posterior_test |
| 85 | +np.allclose(contrast_diff, 0, atol=0.001) |
| 86 | + |
| 87 | +# Generate data for a BART model with random effects |
| 88 | +X = rng.uniform(low=0.0, high=1.0, size=(n, p)) |
| 89 | +W = rng.normal(loc=0.0, scale=1.0, size=(n, 1)) |
| 90 | +f_XW = np.where( |
| 91 | + ((0 <= X[:, 0]) & (X[:, 0] < 0.25)), |
| 92 | + -7.5 * W[:, 0], |
| 93 | + np.where( |
| 94 | + ((0.25 <= X[:, 0]) & (X[:, 0] < 0.5)), |
| 95 | + -2.5 * W[:, 0], |
| 96 | + np.where( |
| 97 | + ((0.5 <= X[:, 0]) & (X[:, 0] < 0.75)), |
| 98 | + 2.5 * W[:, 0], |
| 99 | + 7.5 * W[:, 0], |
| 100 | + ), |
| 101 | + ), |
| 102 | +) |
| 103 | +num_rfx_groups = 3 |
| 104 | +group_labels = rng.choice(num_rfx_groups, size=n) |
| 105 | +basis = np.empty((n, 2)) |
| 106 | +basis[:, 0] = 1.0 |
| 107 | +basis[:, 1] = rng.uniform(0, 1, (n,)) |
| 108 | +rfx_coefs = np.array([[-2, -2], [0, 0], [2, 2]]) |
| 109 | +rfx_term = np.sum(rfx_coefs[group_labels, :] * basis, axis=1) |
| 110 | +E_Y = f_XW + rfx_term |
| 111 | +snr = 2 |
| 112 | +y = E_Y + rng.normal(loc=0.0, scale=1.0, size=(n,)) * (np.std(E_Y) / snr) |
| 113 | + |
| 114 | +# Train-test split |
| 115 | +train_inds, test_inds = train_test_split( |
| 116 | + np.arange(n), test_size=test_set_pct, random_state=1234 |
| 117 | +) |
| 118 | +X_train = X[train_inds, :] |
| 119 | +X_test = X[test_inds, :] |
| 120 | +W_train = W[train_inds, :] |
| 121 | +W_test = W[test_inds, :] |
| 122 | +y_train = y[train_inds] |
| 123 | +y_test = y[test_inds] |
| 124 | +group_ids_train = group_labels[train_inds] |
| 125 | +group_ids_test = group_labels[test_inds] |
| 126 | +rfx_basis_train = basis[train_inds, :] |
| 127 | +rfx_basis_test = basis[test_inds, :] |
| 128 | +n_test = len(test_inds) |
| 129 | +n_train = len(train_inds) |
| 130 | + |
| 131 | +# Fit BART model |
| 132 | +bart_model = BARTModel() |
| 133 | +bart_model.sample( |
| 134 | + X_train=X_train, |
| 135 | + leaf_basis_train=W_train, |
| 136 | + y_train=y_train, |
| 137 | + rfx_group_ids_train=group_ids_train, |
| 138 | + rfx_basis_train=rfx_basis_train, |
| 139 | + num_gfr=10, |
| 140 | + num_burnin=0, |
| 141 | + num_mcmc=1000, |
| 142 | +) |
| 143 | + |
| 144 | +# Compute contrast posterior |
| 145 | +contrast_posterior_test = bart_model.compute_contrast( |
| 146 | + covariates_0=X_test, |
| 147 | + covariates_1=X_test, |
| 148 | + basis_0=np.zeros((n_test, 1)), |
| 149 | + basis_1=np.ones((n_test, 1)), |
| 150 | + rfx_group_ids_0=group_ids_test, |
| 151 | + rfx_group_ids_1=group_ids_test, |
| 152 | + rfx_basis_0=rfx_basis_test, |
| 153 | + rfx_basis_1=rfx_basis_test, |
| 154 | + type="posterior", |
| 155 | + scale="linear", |
| 156 | +) |
| 157 | + |
| 158 | +# Compute the same quantity via two predict calls |
| 159 | +y_hat_posterior_test_0 = bart_model.predict( |
| 160 | + covariates=X_test, |
| 161 | + basis=np.zeros((n_test, 1)), |
| 162 | + rfx_group_ids=group_ids_test, |
| 163 | + rfx_basis=rfx_basis_test, |
| 164 | + type="posterior", |
| 165 | + terms="y_hat", |
| 166 | + scale="linear", |
| 167 | +) |
| 168 | +y_hat_posterior_test_1 = bart_model.predict( |
| 169 | + covariates=X_test, |
| 170 | + basis=np.ones((n_test, 1)), |
| 171 | + rfx_group_ids=group_ids_test, |
| 172 | + rfx_basis=rfx_basis_test, |
| 173 | + type="posterior", |
| 174 | + terms="y_hat", |
| 175 | + scale="linear", |
| 176 | +) |
| 177 | +contrast_posterior_test_comparison = y_hat_posterior_test_1 - y_hat_posterior_test_0 |
| 178 | + |
| 179 | +# Compare results |
| 180 | +contrast_diff = contrast_posterior_test_comparison - contrast_posterior_test |
| 181 | +np.allclose(contrast_diff, 0, atol=0.001) |
0 commit comments