|
| 1 | +# Load libraries |
| 2 | +library(stochtree) |
| 3 | + |
| 4 | +# Generate data |
| 5 | +random_seed <- 1234 |
| 6 | +set.seed(random_seed) |
| 7 | +n <- 500 |
| 8 | +p <- 50 |
| 9 | +X <- matrix(runif(n * p), ncol = p) |
| 10 | +# fmt: skip |
| 11 | +f_X <- ( |
| 12 | + ((0 <= X[, 1]) & (0.25 > X[, 1])) * (-7.5) + |
| 13 | + ((0.25 <= X[, 1]) & (0.5 > X[, 1])) * (-2.5) + |
| 14 | + ((0.5 <= X[, 1]) & (0.75 > X[, 1])) * (2.5) + |
| 15 | + ((0.75 <= X[, 1]) & (1 > X[, 1])) * (7.5) |
| 16 | +) |
| 17 | +mu_X <- f_X |
| 18 | +pi_X <- pnorm(f_X * 0.25) |
| 19 | +tau_X <- 0.5 * X[,2] |
| 20 | +Z <- rbinom(n, 1, pi_X) |
| 21 | +E_XZ <- mu_X + Z * tau_X |
| 22 | +y <- E_XZ + rnorm(n, 0, 1) |
| 23 | + |
| 24 | +# Split into train and test sets |
| 25 | +test_set_pct <- 0.2 |
| 26 | +n_test <- round(test_set_pct * n) |
| 27 | +n_train <- n - n_test |
| 28 | +test_inds <- sort(sample(1:n, n_test, replace = FALSE)) |
| 29 | +train_inds <- (1:n)[!((1:n) %in% test_inds)] |
| 30 | +X_test <- X[test_inds, ] |
| 31 | +X_train <- X[train_inds, ] |
| 32 | +Z_test <- Z[test_inds] |
| 33 | +Z_train <- Z[train_inds] |
| 34 | +pi_test <- pi_X[test_inds] |
| 35 | +pi_train <- pi_X[train_inds] |
| 36 | +y_test <- y[test_inds] |
| 37 | +y_train <- y[train_inds] |
| 38 | + |
| 39 | +# Set a different global seed as a test |
| 40 | +set.seed(837475) |
| 41 | + |
| 42 | +# Run BCF model |
| 43 | +general_params <- list(num_threads = 1, random_seed = random_seed) |
| 44 | +bcf_model <- bcf( |
| 45 | + X_train = X_train, |
| 46 | + Z_train = Z_train, |
| 47 | + propensity_train = pi_train, |
| 48 | + y_train = y_train, |
| 49 | + X_test = X_test, |
| 50 | + Z_test = Z_test, |
| 51 | + propensity_test = pi_test, |
| 52 | + num_gfr = 100, |
| 53 | + num_mcmc = 100, |
| 54 | + general_params = general_params |
| 55 | +) |
| 56 | + |
| 57 | +# # Save results |
| 58 | +# write.csv( |
| 59 | +# bcf_model$y_hat_test, |
| 60 | +# file = "tools/debug/seed_benchmark_bcf_y_hat.csv", |
| 61 | +# row.names = FALSE |
| 62 | +# ) |
| 63 | + |
| 64 | +# Read results and compare to our estimates |
| 65 | +y_hat_test_benchmark <- as.matrix(read.csv( |
| 66 | + "tools/debug/seed_benchmark_bcf_y_hat.csv" |
| 67 | +)) |
| 68 | + |
| 69 | +# Compare results |
| 70 | +sum(abs(y_hat_test_benchmark - bcf_model$y_hat_test) > 1e-6) |
| 71 | + |
| 72 | +# Generate probit data |
| 73 | +random_seed <- 1234 |
| 74 | +set.seed(random_seed) |
| 75 | +n <- 500 |
| 76 | +p <- 50 |
| 77 | +X <- matrix(runif(n * p), ncol = p) |
| 78 | +# fmt: skip |
| 79 | +f_X <- ( |
| 80 | + ((0 <= X[, 1]) & (0.25 > X[, 1])) * (-7.5) + |
| 81 | + ((0.25 <= X[, 1]) & (0.5 > X[, 1])) * (-2.5) + |
| 82 | + ((0.5 <= X[, 1]) & (0.75 > X[, 1])) * (2.5) + |
| 83 | + ((0.75 <= X[, 1]) & (1 > X[, 1])) * (7.5) |
| 84 | +) |
| 85 | +mu_X <- f_X |
| 86 | +pi_X <- pnorm(f_X * 0.25) |
| 87 | +tau_X <- 0.5 * X[,2] |
| 88 | +Z <- rbinom(n, 1, pi_X) |
| 89 | +E_XZ <- mu_X + Z * tau_X |
| 90 | +W <- E_XZ + rnorm(n, 0, 1) |
| 91 | +y <- (W > 0) * 1 |
| 92 | + |
| 93 | +# Split into train and test sets |
| 94 | +test_set_pct <- 0.2 |
| 95 | +n_test <- round(test_set_pct * n) |
| 96 | +n_train <- n - n_test |
| 97 | +test_inds <- sort(sample(1:n, n_test, replace = FALSE)) |
| 98 | +train_inds <- (1:n)[!((1:n) %in% test_inds)] |
| 99 | +X_test <- X[test_inds, ] |
| 100 | +X_train <- X[train_inds, ] |
| 101 | +Z_test <- Z[test_inds] |
| 102 | +Z_train <- Z[train_inds] |
| 103 | +pi_test <- pi_X[test_inds] |
| 104 | +pi_train <- pi_X[train_inds] |
| 105 | +W_test <- W[test_inds] |
| 106 | +W_train <- W[train_inds] |
| 107 | +y_test <- y[test_inds] |
| 108 | +y_train <- y[train_inds] |
| 109 | + |
| 110 | +# Set a different global seed as a test |
| 111 | +set.seed(23446345) |
| 112 | + |
| 113 | +# Run BCF model |
| 114 | +general_params <- list(num_threads = 1, random_seed = random_seed, |
| 115 | + probit_outcome_model = T) |
| 116 | +bcf_model <- bcf( |
| 117 | + X_train = X_train, |
| 118 | + Z_train = Z_train, |
| 119 | + propensity_train = pi_train, |
| 120 | + y_train = y_train, |
| 121 | + X_test = X_test, |
| 122 | + Z_test = Z_test, |
| 123 | + propensity_test = pi_test, |
| 124 | + num_gfr = 100, |
| 125 | + num_mcmc = 100, |
| 126 | + general_params = general_params |
| 127 | +) |
| 128 | + |
| 129 | +# # Save results |
| 130 | +# write.csv( |
| 131 | +# bcf_model$y_hat_test, |
| 132 | +# file = "tools/debug/seed_benchmark_bcf_probit_y_hat.csv", |
| 133 | +# row.names = FALSE |
| 134 | +# ) |
| 135 | + |
| 136 | +# Read results and compare to our estimates |
| 137 | +y_hat_test_benchmark <- as.matrix(read.csv( |
| 138 | + "tools/debug/seed_benchmark_bcf_probit_y_hat.csv" |
| 139 | +)) |
| 140 | + |
| 141 | +# Compare results |
| 142 | +sum(abs(y_hat_test_benchmark - bcf_model$y_hat_test) > 1e-6) |
0 commit comments