From 7fc25e9f4c3c21175cfb0d9d2161f869cfe9a79d Mon Sep 17 00:00:00 2001 From: xvega123 <138428865+xvega123@users.noreply.github.com> Date: Mon, 3 Jul 2023 14:55:03 +0900 Subject: [PATCH] Create mnist.py --- ch03/mnist.py | 128 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 128 insertions(+) create mode 100644 ch03/mnist.py diff --git a/ch03/mnist.py b/ch03/mnist.py new file mode 100644 index 000000000..d7319e87f --- /dev/null +++ b/ch03/mnist.py @@ -0,0 +1,128 @@ +# coding: utf-8 +try: + import urllib.request +except ImportError: + raise ImportError('You should use Python 3.x') +import os.path +import gzip +import pickle +import os +import numpy as np + + +url_base = 'http://yann.lecun.com/exdb/mnist/' +key_file = { + 'train_img':'train-images-idx3-ubyte.gz', + 'train_label':'train-labels-idx1-ubyte.gz', + 'test_img':'t10k-images-idx3-ubyte.gz', + 'test_label':'t10k-labels-idx1-ubyte.gz' +} + +dataset_dir = os.path.dirname(os.path.abspath(__file__)) +save_file = dataset_dir + "/mnist.pkl" + +train_num = 60000 +test_num = 10000 +img_dim = (1, 28, 28) +img_size = 784 + + +def _download(file_name): + file_path = dataset_dir + "/" + file_name + + if os.path.exists(file_path): + return + + print("Downloading " + file_name + " ... ") + urllib.request.urlretrieve(url_base + file_name, file_path) + print("Done") + +def download_mnist(): + for v in key_file.values(): + _download(v) + +def _load_label(file_name): + file_path = dataset_dir + "/" + file_name + + print("Converting " + file_name + " to NumPy Array ...") + with gzip.open(file_path, 'rb') as f: + labels = np.frombuffer(f.read(), np.uint8, offset=8) + print("Done") + + return labels + +def _load_img(file_name): + file_path = dataset_dir + "/" + file_name + + print("Converting " + file_name + " to NumPy Array ...") + with gzip.open(file_path, 'rb') as f: + data = np.frombuffer(f.read(), np.uint8, offset=16) + data = data.reshape(-1, img_size) + print("Done") + + return data + +def _convert_numpy(): + dataset = {} + dataset['train_img'] = _load_img(key_file['train_img']) + dataset['train_label'] = _load_label(key_file['train_label']) + dataset['test_img'] = _load_img(key_file['test_img']) + dataset['test_label'] = _load_label(key_file['test_label']) + + return dataset + +def init_mnist(): + download_mnist() + dataset = _convert_numpy() + print("Creating pickle file ...") + with open(save_file, 'wb') as f: + pickle.dump(dataset, f, -1) + print("Done!") + +def _change_one_hot_label(X): + T = np.zeros((X.size, 10)) + for idx, row in enumerate(T): + row[X[idx]] = 1 + + return T + + +def load_mnist(normalize=True, flatten=True, one_hot_label=False): + """MNIST 데이터셋 읽기 + + Parameters + ---------- + normalize : 이미지의 픽셀 값을 0.0~1.0 사이의 값으로 정규화할지 정한다. + one_hot_label : + one_hot_label이 True면、레이블을 원-핫(one-hot) 배열로 돌려준다. + one-hot 배열은 예를 들어 [0,0,1,0,0,0,0,0,0,0]처럼 한 원소만 1인 배열이다. + flatten : 입력 이미지를 1차원 배열로 만들지를 정한다. + + Returns + ------- + (훈련 이미지, 훈련 레이블), (시험 이미지, 시험 레이블) + """ + if not os.path.exists(save_file): + init_mnist() + + with open(save_file, 'rb') as f: + dataset = pickle.load(f) + + if normalize: + for key in ('train_img', 'test_img'): + dataset[key] = dataset[key].astype(np.float32) + dataset[key] /= 255.0 + + if one_hot_label: + dataset['train_label'] = _change_one_hot_label(dataset['train_label']) + dataset['test_label'] = _change_one_hot_label(dataset['test_label']) + + if not flatten: + for key in ('train_img', 'test_img'): + dataset[key] = dataset[key].reshape(-1, 1, 28, 28) + + return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label']) + + +if __name__ == '__main__': + init_mnist()