|
6 | 6 |
|
7 | 7 | {-# OPTIONS --cubical-compatible --safe #-}
|
8 | 8 |
|
9 |
| -open import Relation.Binary.Core |
10 |
| - |
11 | 9 | module Algebra.Morphism.Structures where
|
12 | 10 |
|
13 | 11 | open import Algebra.Core
|
14 | 12 | open import Algebra.Bundles
|
15 | 13 | import Algebra.Morphism.Definitions as MorphismDefinitions
|
16 | 14 | open import Level using (Level; _⊔_)
|
17 | 15 | open import Function.Definitions
|
| 16 | +open import Relation.Binary.Core |
18 | 17 | open import Relation.Binary.Morphism.Structures
|
19 | 18 |
|
20 | 19 | private
|
21 | 20 | variable
|
22 | 21 | a b ℓ₁ ℓ₂ : Level
|
23 | 22 |
|
| 23 | +------------------------------------------------------------------------ |
| 24 | +-- Morphisms over SuccessorSet-like structures |
| 25 | +------------------------------------------------------------------------ |
| 26 | + |
| 27 | +module SuccessorSetMorphisms |
| 28 | + (N₁ : RawSuccessorSet a ℓ₁) (N₂ : RawSuccessorSet b ℓ₂) |
| 29 | + where |
| 30 | + |
| 31 | + open RawSuccessorSet N₁ |
| 32 | + renaming (Carrier to A; _≈_ to _≈₁_; suc# to suc#₁; zero# to zero#₁) |
| 33 | + open RawSuccessorSet N₂ |
| 34 | + renaming (Carrier to B; _≈_ to _≈₂_; suc# to suc#₂; zero# to zero#₂) |
| 35 | + open MorphismDefinitions A B _≈₂_ |
| 36 | + |
| 37 | + |
| 38 | + record IsSuccessorSetHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where |
| 39 | + field |
| 40 | + isRelHomomorphism : IsRelHomomorphism _≈₁_ _≈₂_ ⟦_⟧ |
| 41 | + suc#-homo : Homomorphic₁ ⟦_⟧ suc#₁ suc#₂ |
| 42 | + zero#-homo : Homomorphic₀ ⟦_⟧ zero#₁ zero#₂ |
| 43 | + |
| 44 | + record IsSuccessorSetMonomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where |
| 45 | + field |
| 46 | + isSuccessorSetHomomorphism : IsSuccessorSetHomomorphism ⟦_⟧ |
| 47 | + injective : Injective _≈₁_ _≈₂_ ⟦_⟧ |
| 48 | + |
| 49 | + open IsSuccessorSetHomomorphism isSuccessorSetHomomorphism public |
| 50 | + |
| 51 | + isRelMonomorphism : IsRelMonomorphism _≈₁_ _≈₂_ ⟦_⟧ |
| 52 | + isRelMonomorphism = record |
| 53 | + { isHomomorphism = isRelHomomorphism |
| 54 | + ; injective = injective |
| 55 | + } |
| 56 | + |
| 57 | + |
| 58 | + record IsSuccessorSetIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where |
| 59 | + field |
| 60 | + isSuccessorSetMonomorphism : IsSuccessorSetMonomorphism ⟦_⟧ |
| 61 | + surjective : Surjective _≈₁_ _≈₂_ ⟦_⟧ |
| 62 | + |
| 63 | + open IsSuccessorSetMonomorphism isSuccessorSetMonomorphism public |
| 64 | + |
| 65 | + isRelIsomorphism : IsRelIsomorphism _≈₁_ _≈₂_ ⟦_⟧ |
| 66 | + isRelIsomorphism = record |
| 67 | + { isMonomorphism = isRelMonomorphism |
| 68 | + ; surjective = surjective |
| 69 | + } |
| 70 | + |
| 71 | + |
24 | 72 | ------------------------------------------------------------------------
|
25 | 73 | -- Morphisms over magma-like structures
|
26 | 74 | ------------------------------------------------------------------------
|
|
0 commit comments