Skip to content

Commit 9d4253f

Browse files
committed
integrate vllm
integrate vllm add doc fix blocking fix fix fix fix fix fix fmt fix Signed-off-by: richardhuo-nv <[email protected]>
1 parent bd630b2 commit 9d4253f

File tree

13 files changed

+611
-168
lines changed

13 files changed

+611
-168
lines changed

docs/guides/run_kvbm_in_trtllm.md

Lines changed: 115 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,115 @@
1+
<!--
2+
SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
3+
SPDX-License-Identifier: Apache-2.0
4+
5+
Licensed under the Apache License, Version 2.0 (the "License");
6+
you may not use this file except in compliance with the License.
7+
You may obtain a copy of the License at
8+
9+
http://www.apache.org/licenses/LICENSE-2.0
10+
11+
Unless required by applicable law or agreed to in writing, software
12+
distributed under the License is distributed on an "AS IS" BASIS,
13+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14+
See the License for the specific language governing permissions and
15+
limitations under the License.
16+
-->
17+
18+
# Running KVBM in TensorRT-LLM
19+
20+
This guide explains how to leverage KVBM (KV Block Manager) to mange KV cache and do KV offloading in TensorRT-LLM (trtllm).
21+
22+
To learn what KVBM is, please check [here](https://docs.nvidia.com/dynamo/latest/architecture/kvbm_intro.html)
23+
24+
> [!Note]
25+
> - Ensure that `etcd` is running before starting.
26+
> - KVBM does not currently support CUDA graphs in TensorRT-LLM.
27+
> - KVBM only supports TensorRT-LLM’s PyTorch backend.
28+
29+
## Quick Start
30+
31+
To use KVBM in TensorRT-LLM, you can follow the steps below:
32+
33+
```bash
34+
# start up etcd for KVBM leader/worker registration and discovery
35+
docker compose -f deploy/docker-compose.yml up -d
36+
37+
# build a container containing trtllm and kvbm, note that KVBM integration is only availiable on TensorRT-LLM commit: TBD
38+
./container/build.sh --framework trtllm --tensorrtllm-commit TBD --enable-kvbm
39+
40+
# launch the container
41+
./container/run.sh --framework trtllm -it --mount-workspace --use-nixl-gds
42+
43+
# enable kv offloading to CPU memory
44+
# 4 means 4GB of pinned CPU memory would be used
45+
export DYN_KVBM_CPU_CACHE_GB=60
46+
47+
# enable kv offloading to disk
48+
# 8 means 8GB of disk would be used
49+
export DYN_KVBM_DISK_CACHE_GB=20
50+
```
51+
52+
```bash
53+
# write an example LLM API config
54+
cat > "/tmp/kvbm_llm_api_config.yaml" <<EOF
55+
backend: pytorch
56+
cuda_graph_config: null
57+
kv_cache_config:
58+
enable_partial_reuse: false
59+
free_gpu_memory_fraction: 0.80
60+
kv_connector_config:
61+
connector_module: dynamo.llm.trtllm_integration.connector
62+
connector_scheduler_class: DynamoKVBMConnectorLeader
63+
connector_worker_class: DynamoKVBMConnectorWorker
64+
EOF
65+
66+
# serve an example LLM model
67+
trtllm-serve deepseek-ai/DeepSeek-R1-Distill-Llama-8B --host localhost --port 8000 --backend pytorch --extra_llm_api_options /tmp/kvbm_llm_api_config.yaml
68+
69+
# make a call to LLM
70+
curl localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
71+
"model": "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
72+
"messages": [
73+
{
74+
"role": "user",
75+
"content": "In the heart of Eldoria, an ancient land of boundless magic and mysterious creatures, lies the long-forgotten city of Aeloria. Once a beacon of knowledge and power, Aeloria was buried beneath the shifting sands of time, lost to the world for centuries. You are an intrepid explorer, known for your unparalleled curiosity and courage, who has stumbled upon an ancient map hinting at ests that Aeloria holds a secret so profound that it has the potential to reshape the very fabric of reality. Your journey will take you through treacherous deserts, enchanted forests, and across perilous mountain ranges. Your Task: Character Background: Develop a detailed background for your character. Describe their motivations for seeking out Aeloria, their skills and weaknesses, and any personal connections to the ancient city or its legends. Are they driven by a quest for knowledge, a search for lost familt clue is hidden."
76+
}
77+
],
78+
"stream":false,
79+
"max_tokens": 30
80+
}'
81+
```
82+
83+
## Enable and View KVBM Metrics
84+
85+
Follow below steps to enable metrics collection and view via Grafana dashboard:
86+
```bash
87+
# Start the basic services (etcd & natsd), along with Prometheus and Grafana
88+
docker compose -f deploy/docker-compose.yml --profile metrics up -d
89+
90+
# write an example LLM API config
91+
cat > "/tmp/kvbm_llm_api_config.yaml" <<EOF
92+
backend: pytorch
93+
cuda_graph_config: null
94+
kv_cache_config:
95+
enable_partial_reuse: false
96+
free_gpu_memory_fraction: 0.80
97+
kv_connector_config:
98+
connector_module: dynamo.llm.trtllm_integration.connector
99+
connector_scheduler_class: DynamoKVBMConnectorLeader
100+
connector_worker_class: DynamoKVBMConnectorWorker
101+
EOF
102+
103+
# serve an example LLM model
104+
trtllm-serve deepseek-ai/DeepSeek-R1-Distill-Llama-8B --host localhost --port 8000 --backend pytorch --extra_llm_api_options /tmp/kvbm_llm_api_config.yaml
105+
106+
# start vllm with DYN_SYSTEM_ENABLED set to true and DYN_SYSTEM_PORT port to 6880.
107+
# NOTE: Make sure port 6880 (for KVBM worker metrics) and port 6881 (for KVBM leader metrics) are available.
108+
DYN_SYSTEM_ENABLED=true DYN_SYSTEM_PORT=6880 trtllm-serve deepseek-ai/DeepSeek-R1-Distill-Llama-8B --host localhost --port 8000 --backend pytorch --extra_llm_api_options /tmp/kvbm_llm_api_config.yaml
109+
110+
# optional if firewall blocks KVBM metrics ports to send prometheus metrics
111+
sudo ufw allow 6880/tcp
112+
sudo ufw allow 6881/tcp
113+
```
114+
115+
View grafana metrics via http://localhost:3001 (default login: dynamo/dynamo) and look for KVBM Dashboard

lib/bindings/python/rust/llm/block_manager/distributed/worker.rs

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -107,14 +107,15 @@ impl KvbmWorker {
107107
#[pymethods]
108108
impl KvbmWorker {
109109
#[new]
110-
#[pyo3(signature = (num_device_blocks, page_size, tensors, device_id=0, dtype_width_bytes=2, drt=None))]
110+
#[pyo3(signature = (num_device_blocks, page_size, tensors, device_id=0, dtype_width_bytes=2, drt=None, layout_blocking=false))]
111111
fn new(
112112
num_device_blocks: usize,
113113
page_size: usize,
114114
tensors: Vec<Py<PyAny>>,
115115
device_id: usize,
116116
dtype_width_bytes: usize,
117117
drt: Option<DistributedRuntime>,
118+
layout_blocking: bool,
118119
) -> PyResult<Self> {
119120
let py_drt = drt.ok_or_else(|| {
120121
pyo3::exceptions::PyValueError::new_err("DistributedRuntime (drt) must be provided")
@@ -146,7 +147,7 @@ impl KvbmWorker {
146147

147148
let worker = rt
148149
.block_on(async move {
149-
let kvbm_worker = KvbmWorkerImpl::new(config).await?;
150+
let kvbm_worker = KvbmWorkerImpl::new(config, layout_blocking).await?;
150151
anyhow::Ok(kvbm_worker)
151152
})
152153
.map_err(to_pyerr)?;

0 commit comments

Comments
 (0)