|
| 1 | +import os |
| 2 | +import pickle |
| 3 | +from typing import Any, Dict, Iterable, Optional, Sequence, Set, Union |
| 4 | + |
| 5 | +import torch |
| 6 | +from spacy.tokens import Doc |
| 7 | +from typing_extensions import NotRequired, TypedDict |
| 8 | + |
| 9 | +from edsnlp.core.pipeline import PipelineProtocol |
| 10 | +from edsnlp.core.torch_component import BatchInput, TorchComponent |
| 11 | +from edsnlp.pipes.base import BaseComponent |
| 12 | +from edsnlp.pipes.trainable.embeddings.typing import ( |
| 13 | + WordContextualizerComponent, |
| 14 | + WordEmbeddingComponent, |
| 15 | +) |
| 16 | +from edsnlp.utils.bindings import Attributes |
| 17 | + |
| 18 | +DocClassifierBatchInput = TypedDict( |
| 19 | + "DocClassifierBatchInput", |
| 20 | + { |
| 21 | + "embedding": BatchInput, |
| 22 | + "targets": NotRequired[torch.Tensor], |
| 23 | + }, |
| 24 | +) |
| 25 | + |
| 26 | +DocClassifierBatchOutput = TypedDict( |
| 27 | + "DocClassifierBatchOutput", |
| 28 | + { |
| 29 | + "loss": Optional[torch.Tensor], |
| 30 | + "labels": Optional[torch.Tensor], |
| 31 | + }, |
| 32 | +) |
| 33 | + |
| 34 | + |
| 35 | +class TrainableDocClassifier( |
| 36 | + TorchComponent[DocClassifierBatchOutput, DocClassifierBatchInput], |
| 37 | + BaseComponent, |
| 38 | +): |
| 39 | + def __init__( |
| 40 | + self, |
| 41 | + nlp: Optional[PipelineProtocol] = None, |
| 42 | + name: str = "doc_classifier", |
| 43 | + *, |
| 44 | + embedding: Union[WordEmbeddingComponent, WordContextualizerComponent], |
| 45 | + num_classes: int, |
| 46 | + label_attr: str = "label", |
| 47 | + loss_fn=None, |
| 48 | + ): |
| 49 | + self.label_attr: Attributes = label_attr |
| 50 | + super().__init__(nlp, name) |
| 51 | + self.embedding = embedding |
| 52 | + self.loss_fn = loss_fn or torch.nn.CrossEntropyLoss() |
| 53 | + |
| 54 | + if not hasattr(self.embedding, "output_size"): |
| 55 | + raise ValueError( |
| 56 | + "The embedding component must have an 'output_size' attribute." |
| 57 | + ) |
| 58 | + embedding_size = self.embedding.output_size |
| 59 | + self.classifier = torch.nn.Linear(embedding_size, num_classes) |
| 60 | + |
| 61 | + def set_extensions(self) -> None: |
| 62 | + super().set_extensions() |
| 63 | + if not Doc.has_extension(self.label_attr): |
| 64 | + Doc.set_extension(self.label_attr, default={}) |
| 65 | + |
| 66 | + def post_init(self, gold_data: Iterable[Doc], exclude: Set[str]): |
| 67 | + super().post_init(gold_data, exclude=exclude) |
| 68 | + |
| 69 | + def preprocess(self, doc: Doc) -> Dict[str, Any]: |
| 70 | + return {"embedding": self.embedding.preprocess(doc)} |
| 71 | + |
| 72 | + def preprocess_supervised(self, doc: Doc) -> Dict[str, Any]: |
| 73 | + preps = self.preprocess(doc) |
| 74 | + label = getattr(doc._, self.label_attr, None) |
| 75 | + if label is None: |
| 76 | + raise ValueError( |
| 77 | + f"Document does not have a gold label in 'doc._.{self.label_attr}'" |
| 78 | + ) |
| 79 | + return { |
| 80 | + **preps, |
| 81 | + "targets": torch.tensor(label, dtype=torch.long), |
| 82 | + } |
| 83 | + |
| 84 | + def collate(self, batch: Dict[str, Sequence[Any]]) -> DocClassifierBatchInput: |
| 85 | + embeddings = self.embedding.collate(batch["embedding"]) |
| 86 | + batch_input: DocClassifierBatchInput = {"embedding": embeddings} |
| 87 | + if "targets" in batch: |
| 88 | + batch_input["targets"] = torch.stack(batch["targets"]) |
| 89 | + return batch_input |
| 90 | + |
| 91 | + def forward(self, batch: DocClassifierBatchInput) -> DocClassifierBatchOutput: |
| 92 | + pooled = self.embedding(batch["embedding"]) |
| 93 | + embeddings = pooled["embeddings"] |
| 94 | + |
| 95 | + logits = self.classifier(embeddings) |
| 96 | + |
| 97 | + output: DocClassifierBatchOutput = {} |
| 98 | + if "targets" in batch: |
| 99 | + loss = self.loss_fn(logits, batch["targets"]) |
| 100 | + output["loss"] = loss |
| 101 | + output["labels"] = None |
| 102 | + else: |
| 103 | + output["loss"] = None |
| 104 | + output["labels"] = torch.argmax(logits, dim=-1) |
| 105 | + return output |
| 106 | + |
| 107 | + def postprocess(self, docs, results, input): |
| 108 | + labels = results["labels"] |
| 109 | + if isinstance(labels, torch.Tensor): |
| 110 | + labels = labels.tolist() |
| 111 | + for doc, label in zip(docs, labels): |
| 112 | + setattr(doc._, self.label_attr, label) |
| 113 | + # doc._.label = label |
| 114 | + return docs |
| 115 | + |
| 116 | + def to_disk(self, path, *, exclude=set()): |
| 117 | + repr_id = object.__repr__(self) |
| 118 | + if repr_id in exclude: |
| 119 | + return |
| 120 | + exclude.add(repr_id) |
| 121 | + os.makedirs(path, exist_ok=True) |
| 122 | + data_path = path / "label_attr.pkl" |
| 123 | + with open(data_path, "wb") as f: |
| 124 | + pickle.dump({"label_attr": self.label_attr}, f) |
| 125 | + return super().to_disk(path, exclude=exclude) |
0 commit comments