@@ -1561,6 +1561,32 @@ static bool llm_load_tensors(
15611561                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
15621562                    }
15631563                } break;
1564+             case LLM_ARCH_COHERE2:
1565+                 {
1566+                     model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
1567+ 
1568+                     // output
1569+                     model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
1570+                     // init output from the input tok embed
1571+                     model.output      = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
1572+                                                       llama_model_loader::TENSOR_DUPLICATED);
1573+ 
1574+                     for (int i = 0; i < n_layer; ++i) {
1575+                         auto & layer = model.layers[i];
1576+ 
1577+                         layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
1578+ 
1579+                         layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
1580+                         layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
1581+                         layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
1582+                         layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
1583+ 
1584+                         layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
1585+                         layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
1586+                         layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
1587+                     }
1588+                 }
1589+                 break;
15641590            case LLM_ARCH_OLMO:  // adapted from LLM_ARCH_LLAMA with norm params removed
15651591                {
15661592                    model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -7642,6 +7668,137 @@ struct llm_build_context {
76427668
76437669    }
76447670
7671+     struct ggml_cgraph * build_cohere2() {
7672+         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
7673+ 
7674+         const int64_t n_embd_head = hparams.n_embd_head_v;
7675+         GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7676+         const float f_logit_scale = hparams.f_logit_scale;
7677+ 
7678+         struct ggml_tensor * cur;
7679+         struct ggml_tensor * inpL;
7680+ 
7681+         inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
7682+ 
7683+         // inp_pos - contains the positions
7684+         struct ggml_tensor * inp_pos = build_inp_pos();
7685+ 
7686+         // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
7687+         // cohere2 requires different mask for layers using sliding window (SWA)
7688+         struct ggml_tensor * KQ_mask     = build_inp_KQ_mask();
7689+         struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
7690+ 
7691+         // sliding window switch pattern
7692+         const int32_t sliding_window_pattern = 4;
7693+ 
7694+         for (int il = 0; il < n_layer; ++il) {
7695+             // three layers sliding window attention (window size 4096) and ROPE
7696+             // fourth layer uses global attention without positional embeddings
7697+             const bool           is_sliding = il % sliding_window_pattern < (sliding_window_pattern - 1);
7698+             struct ggml_tensor * KQ_mask_l = is_sliding ? KQ_mask_swa : KQ_mask;
7699+ 
7700+             // norm
7701+             cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM, cb, il);
7702+             cb(cur, "attn_norm", il);
7703+             struct ggml_tensor * ffn_inp = cur;
7704+ 
7705+             // self-attention
7706+             {
7707+                 // rope freq factors for 128k context
7708+                 struct ggml_tensor * rope_factors = build_rope_factors(il);
7709+ 
7710+                 // compute Q and K and RoPE them
7711+                 struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
7712+                 cb(Qcur, "Qcur", il);
7713+                 if (model.layers[il].bq) {
7714+                     Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
7715+                     cb(Qcur, "Qcur", il);
7716+                 }
7717+ 
7718+                 struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
7719+                 cb(Kcur, "Kcur", il);
7720+                 if (model.layers[il].bk) {
7721+                     Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
7722+                     cb(Kcur, "Kcur", il);
7723+                 }
7724+ 
7725+                 struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
7726+                 cb(Vcur, "Vcur", il);
7727+                 if (model.layers[il].bv) {
7728+                     Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
7729+                     cb(Vcur, "Vcur", il);
7730+                 }
7731+ 
7732+                 if (is_sliding) {
7733+                     Qcur = ggml_rope_ext(ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
7734+                                         n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor,
7735+                                         beta_fast, beta_slow);
7736+                     cb(Qcur, "Qcur", il);
7737+ 
7738+                     Kcur = ggml_rope_ext(ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
7739+                                         rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
7740+                                         attn_factor, beta_fast, beta_slow);
7741+                     cb(Kcur, "Kcur", il);
7742+                 } else {
7743+                     // For non-sliding layers, just reshape without applying RoPE
7744+                     Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
7745+                     cb(Qcur, "Qcur", il);
7746+ 
7747+                     Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
7748+                     cb(Kcur, "Kcur", il);
7749+                 }
7750+ 
7751+                 cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur,
7752+                                    KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f / sqrtf(float(n_embd_head)), cb, il);
7753+             }
7754+ 
7755+             if (il == n_layer - 1) {
7756+                 // skip computing output for unused tokens
7757+                 struct ggml_tensor * inp_out_ids = build_inp_out_ids();
7758+                 cur                              = ggml_get_rows(ctx0, cur, inp_out_ids);
7759+                 inpL                             = ggml_get_rows(ctx0, inpL, inp_out_ids);
7760+                 ffn_inp                          = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
7761+             }
7762+ 
7763+             struct ggml_tensor * attn_out = cur;
7764+ 
7765+             // feed-forward network
7766+             {
7767+                 cur = llm_build_ffn(ctx0, lctx, ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
7768+                                     NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
7769+                                     cb, il);
7770+                 cb(cur, "ffn_out", il);
7771+             }
7772+ 
7773+             // add together residual + FFN + self-attention
7774+             cur = ggml_add(ctx0, cur, inpL);
7775+             cur = ggml_add(ctx0, cur, attn_out);
7776+             cur = lctx.cvec.apply_to(ctx0, cur, il);
7777+             cb(cur, "l_out", il);
7778+ 
7779+             // input for next layer
7780+             inpL = cur;
7781+         }
7782+ 
7783+         cur = inpL;
7784+ 
7785+         cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM, cb, -1);
7786+         cb(cur, "result_norm", -1);
7787+ 
7788+         // lm_head
7789+         cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
7790+ 
7791+         if (f_logit_scale) {
7792+             cur = ggml_scale(ctx0, cur, f_logit_scale);
7793+         }
7794+ 
7795+         cb(cur, "result_output", -1);
7796+ 
7797+         ggml_build_forward_expand(gf, cur);
7798+ 
7799+         return gf;
7800+     }
7801+ 
76457802    // ref: https://allenai.org/olmo
76467803    // based on the original build_llama() function, changes:
76477804    //   * non-parametric layer norm
@@ -10393,6 +10550,10 @@ static struct ggml_cgraph * llama_build_graph(
1039310550            {
1039410551                result = llm.build_command_r();
1039510552            } break;
10553+         case LLM_ARCH_COHERE2:
10554+             {
10555+                 result = llm.build_cohere2();
10556+             } break;
1039610557        case LLM_ARCH_DBRX:
1039710558            {
1039810559                result = llm.build_dbrx();
0 commit comments