|
| 1 | +# Licensed under a 3-clause BSD style license - see LICENSE.rst |
| 2 | +"""Test `astroquery.utils.timer`. |
| 3 | +
|
| 4 | +.. note:: |
| 5 | +
|
| 6 | + The tests only compare rough estimates as |
| 7 | + performance is machine-dependent. |
| 8 | +
|
| 9 | +""" |
| 10 | + |
| 11 | +# STDLIB |
| 12 | +import time |
| 13 | + |
| 14 | +# THIRD-PARTY |
| 15 | +import pytest |
| 16 | +import numpy as np |
| 17 | +from astropy.utils.exceptions import AstropyUserWarning |
| 18 | +from astropy.modeling.fitting import ModelsError |
| 19 | + |
| 20 | +# LOCAL |
| 21 | +from ..timer import RunTimePredictor |
| 22 | + |
| 23 | + |
| 24 | +def func_to_time(x): |
| 25 | + """This sleeps for y seconds for use with timing tests. |
| 26 | +
|
| 27 | + .. math:: |
| 28 | +
|
| 29 | + y = 5 * x - 10 |
| 30 | +
|
| 31 | + """ |
| 32 | + y = 5.0 * np.asarray(x) - 10 |
| 33 | + time.sleep(y) |
| 34 | + return y |
| 35 | + |
| 36 | + |
| 37 | +def test_timer(): |
| 38 | + """Test function timer.""" |
| 39 | + p = RunTimePredictor(func_to_time) |
| 40 | + |
| 41 | + # --- These must run before data points are introduced. --- |
| 42 | + |
| 43 | + with pytest.raises(ValueError): |
| 44 | + p.do_fit() |
| 45 | + |
| 46 | + with pytest.raises(RuntimeError): |
| 47 | + p.predict_time(100) |
| 48 | + |
| 49 | + # --- These must run next to set up data points. --- |
| 50 | + |
| 51 | + with pytest.warns(AstropyUserWarning, match="ufunc 'multiply' did not " |
| 52 | + "contain a loop with signature matching types"): |
| 53 | + p.time_func([2.02, 2.04, 2.1, 'a', 2.3]) |
| 54 | + p.time_func(2.2) # Test OrderedDict |
| 55 | + |
| 56 | + assert p._funcname == 'func_to_time' |
| 57 | + assert p._cache_bad == ['a'] |
| 58 | + |
| 59 | + k = list(p.results.keys()) |
| 60 | + v = list(p.results.values()) |
| 61 | + np.testing.assert_array_equal(k, [2.02, 2.04, 2.1, 2.3, 2.2]) |
| 62 | + np.testing.assert_allclose(v, [0.1, 0.2, 0.5, 1.5, 1.0]) |
| 63 | + |
| 64 | + # --- These should only run once baseline is established. --- |
| 65 | + |
| 66 | + with pytest.raises(ModelsError): |
| 67 | + a = p.do_fit(model='foo') |
| 68 | + |
| 69 | + with pytest.raises(ModelsError): |
| 70 | + a = p.do_fit(fitter='foo') |
| 71 | + |
| 72 | + a = p.do_fit() |
| 73 | + |
| 74 | + assert p._power == 1 |
| 75 | + |
| 76 | + # Perfect slope is 5, with 10% uncertainty |
| 77 | + assert 4.5 <= a[1] <= 5.5 |
| 78 | + |
| 79 | + # Perfect intercept is -10, with 1-sec uncertainty |
| 80 | + assert -11 <= a[0] <= -9 |
| 81 | + |
| 82 | + # --- These should only run once fitting is completed. --- |
| 83 | + |
| 84 | + # Perfect answer is 490, with 10% uncertainty |
| 85 | + t = p.predict_time(100) |
| 86 | + assert 441 <= t <= 539 |
| 87 | + |
| 88 | + # Repeated call to access cached run time |
| 89 | + t2 = p.predict_time(100) |
| 90 | + assert t == t2 |
0 commit comments