|
4 | 4 |
|
5 | 5 |
|
6 | 6 | def test_single_level_simulator(single_level_simulator):
|
| 7 | + # prior -> likelihood |
7 | 8 | assert isinstance(single_level_simulator, bf.experimental.graphical_simulator.GraphicalSimulator)
|
8 | 9 | assert isinstance(single_level_simulator.sample(5), dict)
|
9 | 10 |
|
10 |
| - samples = single_level_simulator.sample((12,)) |
| 11 | + samples = single_level_simulator.sample(12) |
11 | 12 | expected_keys = ["N", "beta", "sigma", "x", "y"]
|
12 | 13 |
|
13 | 14 | assert set(samples.keys()) == set(expected_keys)
|
14 | 15 | assert 5 <= samples["N"] < 15
|
| 16 | + |
| 17 | + # prior node |
15 | 18 | assert np.shape(samples["beta"]) == (12, 2) # num_samples, beta_dim
|
16 | 19 | assert np.shape(samples["sigma"]) == (12, 1) # num_samples, sigma_dim
|
| 20 | + |
| 21 | + # likelihood node |
17 | 22 | assert np.shape(samples["x"]) == (12, samples["N"])
|
18 | 23 | assert np.shape(samples["y"]) == (12, samples["N"])
|
| 24 | + |
| 25 | + |
| 26 | +def test_two_level_simulator(two_level_simulator): |
| 27 | + # hypers |
| 28 | + # | |
| 29 | + # locals shared |
| 30 | + # \ / |
| 31 | + # \ / |
| 32 | + # y |
| 33 | + |
| 34 | + assert isinstance(two_level_simulator, bf.experimental.graphical_simulator.GraphicalSimulator) |
| 35 | + assert isinstance(two_level_simulator.sample(5), dict) |
| 36 | + |
| 37 | + samples = two_level_simulator.sample(15) |
| 38 | + expected_keys = ["hyper_mean", "hyper_std", "local_mean", "shared_std", "y"] |
| 39 | + |
| 40 | + assert set(samples.keys()) == set(expected_keys) |
| 41 | + |
| 42 | + # hypers node |
| 43 | + assert np.shape(samples["hyper_mean"]) == (15, 1) |
| 44 | + assert np.shape(samples["hyper_std"]) == (15, 1) |
| 45 | + |
| 46 | + # locals node |
| 47 | + assert np.shape(samples["local_mean"]) == (15, 6, 1) |
| 48 | + |
| 49 | + # shared node |
| 50 | + assert np.shape(samples["shared_std"]) == (15, 1) |
| 51 | + |
| 52 | + # y node |
| 53 | + assert np.shape(samples["y"]) == (15, 6, 10, 1) |
| 54 | + |
| 55 | + |
| 56 | +def test_two_level_repeated_roots_simulator(two_level_repeated_roots_simulator): |
| 57 | + # hypers |
| 58 | + # | |
| 59 | + # locals shared |
| 60 | + # \ / |
| 61 | + # \ / |
| 62 | + # y |
| 63 | + |
| 64 | + simulator = two_level_repeated_roots_simulator |
| 65 | + assert isinstance(simulator, bf.experimental.graphical_simulator.GraphicalSimulator) |
| 66 | + assert isinstance(simulator.sample(5), dict) |
| 67 | + |
| 68 | + samples = simulator.sample(15) |
| 69 | + expected_keys = ["hyper_mean", "hyper_std", "local_mean", "shared_std", "y"] |
| 70 | + |
| 71 | + assert set(samples.keys()) == set(expected_keys) |
| 72 | + |
| 73 | + # hypers node |
| 74 | + assert np.shape(samples["hyper_mean"]) == (15, 5, 1) |
| 75 | + assert np.shape(samples["hyper_std"]) == (15, 5, 1) |
| 76 | + |
| 77 | + # locals node |
| 78 | + assert np.shape(samples["local_mean"]) == (15, 5, 6, 1) |
| 79 | + |
| 80 | + # shared node |
| 81 | + assert np.shape(samples["shared_std"]) == (15, 1) |
| 82 | + |
| 83 | + # y node |
| 84 | + assert np.shape(samples["y"]) == (15, 5, 6, 10, 1) |
| 85 | + |
| 86 | + |
| 87 | +def test_irt_simulator(irt_simulator): |
| 88 | + # schools |
| 89 | + # / \ |
| 90 | + # exams students |
| 91 | + # | | |
| 92 | + # questions | |
| 93 | + # \ / |
| 94 | + # observations |
| 95 | + |
| 96 | + assert isinstance(irt_simulator, bf.experimental.graphical_simulator.GraphicalSimulator) |
| 97 | + assert isinstance(irt_simulator.sample(5), dict) |
| 98 | + |
| 99 | + samples = irt_simulator.sample(22) |
| 100 | + expected_keys = [ |
| 101 | + "mu_exam_mean", |
| 102 | + "sigma_exam_mean", |
| 103 | + "mu_exam_std", |
| 104 | + "sigma_exam_std", |
| 105 | + "exam_mean", |
| 106 | + "exam_std", |
| 107 | + "question_difficulty", |
| 108 | + "student_ability", |
| 109 | + "obs", |
| 110 | + "num_exams", # np.random.randint(2, 4) |
| 111 | + "num_questions", # np.random.randint(10, 21) |
| 112 | + "num_students", # np.random.randint(100, 201) |
| 113 | + ] |
| 114 | + |
| 115 | + assert set(samples.keys()) == set(expected_keys) |
| 116 | + |
| 117 | + # schools node |
| 118 | + assert np.shape(samples["mu_exam_mean"]) == (22, 1) |
| 119 | + assert np.shape(samples["sigma_exam_mean"]) == (22, 1) |
| 120 | + assert np.shape(samples["mu_exam_std"]) == (22, 1) |
| 121 | + assert np.shape(samples["sigma_exam_std"]) == (22, 1) |
| 122 | + |
| 123 | + # exams node |
| 124 | + assert np.shape(samples["exam_mean"]) == (22, samples["num_exams"], 1) |
| 125 | + assert np.shape(samples["exam_std"]) == (22, samples["num_exams"], 1) |
| 126 | + |
| 127 | + # questions node |
| 128 | + assert np.shape(samples["question_difficulty"]) == (22, samples["num_exams"], samples["num_questions"], 1) |
| 129 | + |
| 130 | + # students node |
| 131 | + assert np.shape(samples["student_ability"]) == (22, samples["num_students"], 1) |
| 132 | + |
| 133 | + # observations node |
| 134 | + assert np.shape(samples["obs"]) == ( |
| 135 | + 22, |
| 136 | + samples["num_exams"], |
| 137 | + samples["num_students"], |
| 138 | + samples["num_questions"], |
| 139 | + 1, |
| 140 | + ) |
0 commit comments