@@ -14,7 +14,6 @@ def loss(
14
14
history : keras .callbacks .History ,
15
15
train_key : str = "loss" ,
16
16
val_key : str = "val_loss" ,
17
- per_training_step : bool = False ,
18
17
smoothing_factor : float = 0.8 ,
19
18
figsize : Sequence [float ] = None ,
20
19
train_color : str = "#132a70" ,
@@ -40,8 +39,6 @@ def loss(
40
39
The training loss key to look for in the history
41
40
val_key : str, optional, default: "val_loss"
42
41
The validation loss key to look for in the history
43
- per_training_step : bool, optional, default: False
44
- A flag for making loss trajectory detailed (to training steps) rather than per epoch.
45
42
smoothing_factor : float, optional, default: 0.8
46
43
If greater than zero, smooth the loss curves by applying an exponential moving average.
47
44
figsize : tuple or None, optional, default: None
@@ -170,7 +167,7 @@ def loss(
170
167
num_row = num_row ,
171
168
num_col = 1 ,
172
169
title = ["Loss Trajectory" ],
173
- xlabel = "Training step #" if per_training_step else "Training epoch #" ,
170
+ xlabel = "Training epoch #" ,
174
171
ylabel = "Value" ,
175
172
title_fontsize = title_fontsize ,
176
173
label_fontsize = label_fontsize ,
0 commit comments