|
1 | 1 | # Inference scripts for BLOOM
|
2 | 2 |
|
3 |
| -## BLOOM Inference solutions |
4 |
| - |
5 |
| -Here are some benchmark resuls on JeanZay's 8x80GB A100 node w/ 512GB of CPU memory: |
6 |
| - |
7 |
| -All benchmarks are doing greedy generation of 100 token outputs: |
8 |
| -``` |
9 |
| -Generate args {'max_length': 100, 'do_sample': False} |
10 |
| -``` |
11 |
| -The input prompt is comprised of just a few tokens. |
12 |
| - |
13 |
| -Throughput in msecs on 8x80GB gpus: |
14 |
| - |
15 |
| -| project \ bs | 1 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | |
16 |
| -| :---------------- | :----- | :---- | :---- | :---- | :--- | :--- | :--- | :--- | |
17 |
| -| accelerate bf16 | 230.38 | 31.78 | 17.84 | 10.89 | oom | | | | |
18 |
| -| accelerate int8 | 286.56 | 40.92 | 22.65 | 13.27 | oom | | | | |
19 |
| -| ds-inference fp16 | 44.02 | 5.70 | 3.01 | 1.68 | 1.00 | 0.69 | oom | | |
20 |
| -| ds-inference int8 | 89.09 | 11.44 | 5.88 | 3.09 | 1.71 | 1.02 | 0.71 | oom | |
21 |
| -| ds-zero bf16 | 283 | 34.88 | oom | | | | | | |
22 |
| - |
23 |
| -note: Since Deepspeed-ZeRO can process multiple generate streams in parallel its throughput can be further divided by 8 or 16, depending on whether 8 or 16 gpus were used during the generate. and, of course, it means that it can process a bs of 64 in the case of 8x80 A100 (the table above). |
24 |
| - |
25 |
| -Start to ready to generate in secs (mainly loading and data preparation time): |
26 |
| - |
27 |
| -| project | | |
28 |
| -| :---------------------- | :--- | |
29 |
| -| accelerate | 121 | |
30 |
| -| ds-inference shard-int8 | 61 | |
31 |
| -| ds-inference shard-fp16 | 60 | |
32 |
| -| ds-inference unsharded | 662 | |
33 |
| -| ds-zero | 462 | |
34 |
| - |
35 |
| -Now let's look at the power of quantized int8-based models provided by Deepspeed-Inference and BitsNBytes, as it requires only half the original GPU memory of inference in bfloat16 or float16. |
36 |
| - |
37 |
| -Throughput in msecs 4x80GB A100: |
38 |
| - |
39 |
| -| project \ bs | 1 | 8 | 16 | 32 | 64 | 128 | |
40 |
| -| :---------------- | :----- | :---- | :---- | :---- | :--- | :--- | |
41 |
| -| accelerate int8 | 284.15 | 40.14 | 21.97 | oom | | | |
42 |
| -| ds-inference int8 | 156.51 | 20.11 | 10.38 | 5.50 | 2.96 | oom | |
43 |
| - |
44 |
| -To get the benchmark results simply add `--benchmark` to any of these 3 scripts discussed below. |
45 |
| - |
46 |
| - |
47 |
| -## Deepspeed-Inference |
48 |
| - |
49 |
| -Deepspeed-Inference uses Tensor-Parallelism and efficient fused CUDA kernels: |
50 |
| -https://www.deepspeed.ai/tutorials/inference-tutorial/ |
51 |
| - |
52 |
| -### Setup |
53 |
| - |
54 |
| -``` |
55 |
| -pip install deepspeed>=0.7.3 |
56 |
| -``` |
57 |
| - |
58 |
| -### Run |
59 |
| - |
60 |
| -1. the fastest approach is to use a tp-pre-sharded checkpoint that takes only ~1min to load, as compared to 10min for non-presharded bloom checkpoint |
61 |
| - |
62 |
| - |
63 |
| -``` |
64 |
| -deepspeed --num_gpus 8 scripts/bloom-inference-scripts/bloom-ds-inference.py --name microsoft/bloom-deepspeed-inference-fp16 |
65 |
| -``` |
66 |
| - |
67 |
| -1a. |
68 |
| -if you want to run the original bloom checkpoint, which once loaded will run at the same throughput as the previous solution, but the loading will take 10-20min: |
69 |
| - |
70 |
| -``` |
71 |
| -deepspeed --num_gpus 8 scripts/bloom-inference-scripts/bloom-ds-inference.py --name bigscience/bloom |
72 |
| -``` |
73 |
| - |
74 |
| -2a. The 8bit quantized version requires you to have only half the GPU memory of the normal half precision version: |
75 |
| - |
76 |
| - |
77 |
| -``` |
78 |
| -deepspeed --num_gpus 8 scripts/bloom-inference-scripts/bloom-ds-inference.py --name microsoft/bloom-deepspeed-inference-int8 --dtype int8 |
79 |
| -``` |
80 |
| - |
81 |
| -Here we used `microsoft/bloom-deepspeed-inference-int8` and also told the script to run in `int8`. |
82 |
| - |
83 |
| -And of course, just 4x80GB A100 gpus is now sufficient: |
84 |
| - |
85 |
| -``` |
86 |
| -deepspeed --num_gpus 4 scripts/bloom-inference-scripts/bloom-ds-inference.py --name microsoft/bloom-deepspeed-inference-int8 --dtype int8 |
87 |
| -``` |
88 |
| - |
89 |
| - |
90 |
| - |
91 |
| -## HF Accelerate |
92 |
| - |
93 |
| -HF Accelerate can use naive Pipeline Parallelism to load a huge model over multiple GPUs: |
94 |
| -https://github.com/huggingface/accelerate |
95 |
| - |
96 |
| -### Setup |
97 |
| - |
98 |
| -``` |
99 |
| -pip install transformers>=4.21.3 accelerate>=0.12.0 |
100 |
| -``` |
101 |
| - |
102 |
| - |
103 |
| -### Run |
104 |
| - |
105 |
| - |
106 |
| -``` |
107 |
| -python scripts/bloom-inference-scripts/bloom-accelerate-inference.py --name bigscience/bloom --batch_size 1 --benchmark 2>&1 | tee bloom-ds-zero-inference_bs=1.txt |
108 |
| -``` |
109 |
| - |
110 |
| -To activate the 8bit quantized solution first install `bitsnbytes`: |
111 |
| - |
112 |
| -``` |
113 |
| -pip install bitsandbytes |
114 |
| -``` |
115 |
| - |
116 |
| -and then add `--dtype int8` to the previous command line: |
117 |
| - |
118 |
| -``` |
119 |
| -python scripts/bloom-inference-scripts/bloom-accelerate-inference.py --name bigscience/bloom --dtype int8 --batch_size 1 --benchmark 2>&1 | tee bloom-int8-accelerate-inference_bs=4.txt |
120 |
| -``` |
121 |
| - |
122 |
| -if you have more that 4 GPUs you can tell it to use only 4 with: |
123 |
| -``` |
124 |
| -CUDA_VISIBLE_DEVICES=0,1,2,3 python scripts/bloom-inference-scripts/bloom-accelerate-inference.py --name bigscience/bloom --dtype int8 --batch_size 1 --benchmark 2>&1 | tee bloom-int8-accelerate-inference_bs=4.txt |
125 |
| -``` |
126 |
| - |
127 |
| - |
128 |
| -## Deepspeed ZeRO-Inference |
129 |
| - |
130 |
| -https://www.deepspeed.ai/tutorials/zero/ |
131 |
| - |
132 |
| -### Setup |
133 |
| - |
134 |
| -``` |
135 |
| -pip install deepspeed |
136 |
| -``` |
137 |
| - |
138 |
| - |
139 |
| -### Run |
140 |
| - |
141 |
| -Note that the script currently runs the same inputs on all GPUs, but you can run a different stream on each GPU, and get `n_gpu` times faster throughput. You can't do that with Deepspeed-Inference. |
142 |
| - |
143 |
| - |
144 |
| -``` |
145 |
| -deepspeed --num_gpus 8 scripts/bloom-inference-scripts/bloom-ds-zero-inference.py --name bigscience/bloom --batch_size 1 --benchmark 2>&1 | tee bloom-ds-zero-inference_bs=1.txt |
146 |
| -``` |
147 |
| - |
148 |
| -Please remember that with ZeRO the user can generate multiple unique streams at the same time - and thus the overall performance should be throughput in secs/token divided by number of participating gpus - so 8x to 16x faster depending on whether 8 or 16 gpus were used! |
149 |
| - |
150 |
| -You can also try the offloading solutions with just one small GPU, which will take a long time to run, but if you don't have 8 huge GPUs this is as good as it gets. |
151 |
| - |
152 |
| - |
153 |
| -CPU-Offload (1x gpus): |
154 |
| -``` |
155 |
| -deepspeed --num_gpus 1 scripts/bloom-inference-scripts/bloom-ds-zero-inference.py --name bigscience/bloom --batch_size 8 --cpu_offload --benchmark 2>&1 | tee bloom-ds-zero-inference-cpu_offload_bs=8.txt |
156 |
| -``` |
157 |
| - |
158 |
| -NVMe-Offload (1x gpus): |
159 |
| -``` |
160 |
| -deepspeed --num_gpus 1 scripts/bloom-inference-scripts/bloom-ds-zero-inference.py --name bigscience/bloom --batch_size 8 --nvme_offload_path=/path/to/nvme_offload --benchmark 2>&1 | tee bloom-ds-zero-inference-nvme_offload_bs=8.txt |
161 |
| -``` |
162 |
| - |
163 |
| -make sure to adjust `/path/to/nvme_offload` to somewhere you have ~400GB of free memory on a fast NVMe drive. |
| 3 | +Moved to https://github.com/huggingface/transformers-bloom-inference/tree/main/bloom-inference-scripts |
0 commit comments