-
-
Notifications
You must be signed in to change notification settings - Fork 133
Open
Description
I'm using the Huggingface implementation of seqeval, example codes as follows:
from datasets import load_metric
predictions = [['B-E', 'I-E', 'O', 'O', 'O', 'O', 'O', 'O']]
references = [['B-E', 'I-E', 'O', 'O', 'B-C', 'I-C', 'I-C', 'O']]
metric = load_metric('seqeval')
for i in range(len(predictions)):
metric.add(
prediction=predictions[i],
reference=references[i]
)
results = metric.compute()
print(results)
My question is about the reported Overall F1 score. Given the references = [['B-E', 'I-E', 'O', 'O', 'B-C', 'I-C', 'I-C', 'O']]:
predictions = [['B-E', 'I-E', 'O', 'O', 'O', 'B-C', 'I-C', 'O']]: Returnsoverall_f1': 0.5, 'overall_accuracy': 0.75predictions = [['B-E', 'I-E', 'O', 'O', 'O', 'O', 'O', 'O']]: Returns'overall_f1': 0.6666666666666666, 'overall_accuracy': 0.625
Why is the F1 score higher for the second case with missing "C" class predictions? Shouldn't both cases return the same Overall F1 score? By the way, in both cases, F1 score for "C" is 0.
Thanks!
Metadata
Metadata
Assignees
Labels
No labels