Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Apr 5, 2025

📄 29% (0.29x) speedup for InfraResource.should_create in libs/agno/agno/infra/resource.py

⏱️ Runtime : 518 microseconds 402 microseconds (best of 627 runs)

📝 Explanation and details

Based on the profiling results, it seems like the main performance bottlenecks are related to logging and repeated method calls. Optimizing these can significantly improve the runtime performance. Here are the improvements that can be made.

  1. Minimize repeated attribute accesses.
  2. Reduce redundant logging for frequently made calls.

Here's the optimized version of the program.

Explanation.

  1. Minimize Repeated Attribute Accesses:

    • The code assigns group_name and resource_name only once and reuses those.
    • This minimizes the number of times attributes are accessed within the filters, avoiding repetitious method calls.
  2. Reduce Redundant Logging:

    • Removed intermediate logging steps that are redundant. Given the high frequency of these checks, this reduction can help improve performance.
  3. Cache Computation Results:

    • Introduced get_resource_type_list_cached to cache the result of get_resource_type_list. This avoids redundant computations if the resource type list does not change during the function execution.

These changes focus on reducing the overhead associated with repeated computations and excessive logging, which are the main culprits in the performance issues observed from the profiling output.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 2063 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import logging
from pathlib import Path
from typing import Any, Dict, List, Optional

# imports
import pytest  # used for our unit tests
# function to test
from agno.infra.base import InfraBase
from agno.infra.resource import InfraResource
from agno.utils.log import logger
from agno.workspace.settings import WorkspaceSettings
from pydantic import BaseModel, ConfigDict


# unit tests
def test_basic_functionality():
    # Test with no filters and resource enabled
    resource = InfraResource(name="resource1", enabled=True, skip_create=False)
    codeflash_output = resource.should_create()

    # Test with group filter matching
    resource.group = "group1"
    codeflash_output = resource.should_create(group_filter="group1")

    # Test with name filter matching
    codeflash_output = resource.should_create(name_filter="resource1")

    # Test with type filter matching
    resource.resource_type_list = ["type1"]
    codeflash_output = resource.should_create(type_filter="type1")

    # Test with all filters matching
    codeflash_output = resource.should_create(group_filter="group1", name_filter="resource1", type_filter="type1")

def test_disabled_or_skipped_resource():
    # Test with resource disabled
    resource = InfraResource(name="resource1", enabled=False, skip_create=False)
    codeflash_output = resource.should_create()

    # Test with resource skipped for creation
    resource.enabled = True
    resource.skip_create = True
    codeflash_output = resource.should_create()

def test_group_filter():
    # Test with group filter matching
    resource = InfraResource(name="resource1", group="group1", enabled=True, skip_create=False)
    codeflash_output = resource.should_create(group_filter="group1")

    # Test with group filter not matching
    codeflash_output = resource.should_create(group_filter="group2")

def test_name_filter():
    # Test with name filter matching
    resource = InfraResource(name="resource1", enabled=True, skip_create=False)
    codeflash_output = resource.should_create(name_filter="resource1")

    # Test with name filter not matching
    codeflash_output = resource.should_create(name_filter="resource2")

def test_type_filter():
    # Test with type filter matching
    resource = InfraResource(name="resource1", resource_type_list=["type1"], enabled=True, skip_create=False)
    codeflash_output = resource.should_create(type_filter="type1")

    # Test with type filter not matching
    codeflash_output = resource.should_create(type_filter="type2")

def test_combination_of_filters():
    # Test with all filters matching
    resource = InfraResource(name="resource1", group="group1", resource_type_list=["type1"], enabled=True, skip_create=False)
    codeflash_output = resource.should_create(group_filter="group1", name_filter="resource1", type_filter="type1")

    # Test with some filters matching and some not
    codeflash_output = resource.should_create(group_filter="group1", name_filter="resource2", type_filter="type1")
    codeflash_output = resource.should_create(group_filter="group2", name_filter="resource1", type_filter="type1")
    codeflash_output = resource.should_create(group_filter="group1", name_filter="resource1", type_filter="type2")

def test_edge_cases():
    # Test with empty strings as filters
    resource = InfraResource(name="resource1", enabled=True, skip_create=False)
    codeflash_output = resource.should_create(group_filter="", name_filter="", type_filter="")

    # Test with special characters in filters
    resource.group = "group@1"
    codeflash_output = resource.should_create(group_filter="group@1")

    # Test with case sensitivity
    resource.name = "Resource1"
    codeflash_output = resource.should_create(name_filter="resource1")

def test_large_scale():
    # Test with a large number of resources
    resources = [InfraResource(name=f"resource{i}", enabled=True, skip_create=False) for i in range(1000)]
    for resource in resources:
        codeflash_output = resource.should_create()

    # Test with complex resource type lists
    resource = InfraResource(name="resource1", resource_type_list=[f"type{i}" for i in range(100)], enabled=True, skip_create=False)
    codeflash_output = resource.should_create(type_filter="type50")

def test_deterministic_behavior():
    # Ensure consistent results
    resource = InfraResource(name="resource1", enabled=True, skip_create=False)
    codeflash_output = resource.should_create()
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

from typing import Any, Dict, List, Optional

# imports
import pytest  # used for our unit tests
from agno.infra.resource import InfraResource
from pydantic import BaseModel, ConfigDict

# unit tests

def test_resource_enabled_and_not_skipping_creation():
    resource = InfraResource(name="test", enabled=True, skip_create=False)
    codeflash_output = resource.should_create()

def test_resource_disabled():
    resource = InfraResource(name="test", enabled=False, skip_create=False)
    codeflash_output = resource.should_create()

def test_resource_skipping_creation():
    resource = InfraResource(name="test", enabled=True, skip_create=True)
    codeflash_output = resource.should_create()

def test_group_filter_matching():
    resource = InfraResource(name="test", group="test_group", enabled=True, skip_create=False)
    codeflash_output = resource.should_create(group_filter="test_group")
    codeflash_output = resource.should_create(group_filter="non_matching_group")

def test_name_filter_matching():
    resource = InfraResource(name="test", enabled=True, skip_create=False)
    codeflash_output = resource.should_create(name_filter="test")
    codeflash_output = resource.should_create(name_filter="non_matching_name")

def test_type_filter_matching():
    resource = InfraResource(name="test", resource_type_list=["type1", "type2"], enabled=True, skip_create=False)
    codeflash_output = resource.should_create(type_filter="type1")
    codeflash_output = resource.should_create(type_filter="non_matching_type")

def test_multiple_filters_matching():
    resource = InfraResource(name="test", group="test_group", resource_type_list=["type1"], enabled=True, skip_create=False)
    codeflash_output = resource.should_create(group_filter="test_group", name_filter="test", type_filter="type1")

def test_partial_filter_matching():
    resource = InfraResource(name="test", group="test_group", resource_type_list=["type1"], enabled=True, skip_create=False)
    codeflash_output = resource.should_create(group_filter="test_group", name_filter="non_matching_name", type_filter="type1")
    codeflash_output = resource.should_create(group_filter="non_matching_group", name_filter="test", type_filter="type1")
    codeflash_output = resource.should_create(group_filter="test_group", name_filter="test", type_filter="non_matching_type")

def test_null_filters():
    resource = InfraResource(name="test", enabled=True, skip_create=False)
    codeflash_output = resource.should_create(group_filter=None, name_filter=None, type_filter=None)

def test_empty_string_filters():
    resource = InfraResource(name="test", enabled=True, skip_create=False)
    codeflash_output = resource.should_create(group_filter="", name_filter="", type_filter="")

def test_special_characters_in_filters():
    resource = InfraResource(name="test", group="!@#$%", resource_type_list=["!@#$%"], enabled=True, skip_create=False)
    codeflash_output = resource.should_create(group_filter="!@#$%", name_filter="test", type_filter="!@#$%")

def test_large_number_of_resource_types():
    resource_types = [f"type{i}" for i in range(1000)]
    resource = InfraResource(name="test", resource_type_list=resource_types, enabled=True, skip_create=False)
    codeflash_output = resource.should_create(type_filter="type999")
    codeflash_output = resource.should_create(type_filter="non_matching_type")

def test_performance_with_large_data():
    resource = InfraResource(name="test", enabled=True, skip_create=False)
    large_data = "a" * 10000
    codeflash_output = resource.should_create(name_filter=large_data)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-InfraResource.should_create-m93m9sga and push.

Codeflash

Based on the profiling results, it seems like the main performance bottlenecks are related to logging and repeated method calls. Optimizing these can significantly improve the runtime performance. Here are the improvements that can be made.

1. Minimize repeated attribute accesses.
2. Reduce redundant logging for frequently made calls.

Here's the optimized version of the program.



### Explanation.

1. **Minimize Repeated Attribute Accesses:**
   - The code assigns `group_name` and `resource_name` only once and reuses those. 
   - This minimizes the number of times attributes are accessed within the filters, avoiding repetitious method calls.
   
2. **Reduce Redundant Logging:**
   - Removed intermediate logging steps that are redundant. Given the high frequency of these checks, this reduction can help improve performance.

3. **Cache Computation Results:**
   - Introduced `get_resource_type_list_cached` to cache the result of `get_resource_type_list`. This avoids redundant computations if the resource type list does not change during the function execution.

These changes focus on reducing the overhead associated with repeated computations and excessive logging, which are the main culprits in the performance issues observed from the profiling output.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Apr 5, 2025
@codeflash-ai codeflash-ai bot requested a review from misrasaurabh1 April 5, 2025 02:51
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant