|
| 1 | +# SPDX-FileCopyrightText: 2022-present deepset GmbH <[email protected]> |
| 2 | +# |
| 3 | +# SPDX-License-Identifier: Apache-2.0 |
| 4 | + |
| 5 | +from dataclasses import replace |
| 6 | +from typing import Any, Optional, Tuple |
| 7 | + |
| 8 | +from haystack import Document, component, default_from_dict, default_to_dict, logging |
| 9 | +from haystack.components.converters.image.image_utils import ( |
| 10 | + _batch_convert_pdf_pages_to_images, |
| 11 | + _encode_image_to_base64, |
| 12 | + _extract_image_sources_info, |
| 13 | + _PDFPageInfo, |
| 14 | +) |
| 15 | +from haystack.dataclasses import ByteStream |
| 16 | +from haystack.utils.auth import Secret, deserialize_secrets_inplace |
| 17 | +from tqdm import tqdm |
| 18 | + |
| 19 | +from cohere import AsyncClientV2, ClientV2 |
| 20 | + |
| 21 | +from .embedding_types import EmbeddingTypes |
| 22 | + |
| 23 | +# PDF is not officially supported, but we convert PDFs to JPEG images |
| 24 | +SUPPORTED_IMAGE_MIME_TYPES = ["image/jpeg", "image/png", "application/pdf"] |
| 25 | + |
| 26 | + |
| 27 | +logger = logging.getLogger(__name__) |
| 28 | + |
| 29 | + |
| 30 | +@component |
| 31 | +class CohereDocumentImageEmbedder: |
| 32 | + """ |
| 33 | + A component for computing Document embeddings based on images using Cohere models. |
| 34 | +
|
| 35 | + The embedding of each Document is stored in the `embedding` field of the Document. |
| 36 | +
|
| 37 | + ### Usage example |
| 38 | + ```python |
| 39 | + from haystack import Document |
| 40 | + from haystack_integrations.components.embedders.cohere import CohereDocumentImageEmbedder |
| 41 | +
|
| 42 | + embedder = CohereDocumentImageEmbedder(model="embed-v4.0") |
| 43 | +
|
| 44 | + documents = [ |
| 45 | + Document(content="A photo of a cat", meta={"file_path": "cat.jpg"}), |
| 46 | + Document(content="A photo of a dog", meta={"file_path": "dog.jpg"}), |
| 47 | + ] |
| 48 | +
|
| 49 | + result = embedder.run(documents=documents) |
| 50 | + documents_with_embeddings = result["documents"] |
| 51 | + print(documents_with_embeddings) |
| 52 | +
|
| 53 | + # [Document(id=..., |
| 54 | + # content='A photo of a cat', |
| 55 | + # meta={'file_path': 'cat.jpg', |
| 56 | + # 'embedding_source': {'type': 'image', 'file_path_meta_field': 'file_path'}}, |
| 57 | + # embedding=vector of size 1536), |
| 58 | + # ...] |
| 59 | + ``` |
| 60 | + """ |
| 61 | + |
| 62 | + def __init__( |
| 63 | + self, |
| 64 | + *, |
| 65 | + file_path_meta_field: str = "file_path", |
| 66 | + root_path: Optional[str] = None, |
| 67 | + image_size: Optional[Tuple[int, int]] = None, |
| 68 | + api_key: Secret = Secret.from_env_var(["COHERE_API_KEY", "CO_API_KEY"]), |
| 69 | + model: str = "embed-v4.0", |
| 70 | + api_base_url: str = "https://api.cohere.com", |
| 71 | + timeout: float = 120.0, |
| 72 | + embedding_dimension: Optional[int] = None, |
| 73 | + embedding_type: EmbeddingTypes = EmbeddingTypes.FLOAT, |
| 74 | + progress_bar: bool = True, |
| 75 | + ) -> None: |
| 76 | + """ |
| 77 | + Creates a CohereDocumentImageEmbedder component. |
| 78 | +
|
| 79 | + :param file_path_meta_field: |
| 80 | + The metadata field in the Document that contains the file path to the image or PDF. |
| 81 | + :param root_path: |
| 82 | + The root directory path where document files are located. If provided, file paths in |
| 83 | + document metadata will be resolved relative to this path. If None, file paths are treated as absolute paths. |
| 84 | + :param image_size: |
| 85 | + If provided, resizes the image to fit within the specified dimensions (width, height) while |
| 86 | + maintaining aspect ratio. This reduces file size, memory usage, and processing time, which is beneficial |
| 87 | + when working with models that have resolution constraints or when transmitting images to remote services. |
| 88 | + :param api_key: |
| 89 | + The Cohere API key. |
| 90 | + :param model: |
| 91 | + The Cohere model to use for calculating embeddings. |
| 92 | + Read [Cohere documentation](https://docs.cohere.com/docs/models#embed) for a list of all supported models. |
| 93 | + :param api_base_url: |
| 94 | + The Cohere API base URL. |
| 95 | + :param timeout: |
| 96 | + Request timeout in seconds. |
| 97 | + :param embedding_dimension: |
| 98 | + The dimension of the embeddings to return. Only valid for v4 and newer models. |
| 99 | + Read [Cohere API reference](https://docs.cohere.com/reference/embed) for a list possible values and |
| 100 | + supported models. |
| 101 | + :param embedding_type: |
| 102 | + The type of embeddings to return. Defaults to float embeddings. |
| 103 | + Specifying a type different from float is only supported for Embed v3.0 and newer models. |
| 104 | + :param progress_bar: |
| 105 | + Whether to show a progress bar or not. Can be helpful to disable in production deployments |
| 106 | + to keep the logs clean. |
| 107 | + """ |
| 108 | + |
| 109 | + self.file_path_meta_field = file_path_meta_field |
| 110 | + self.root_path = root_path or "" |
| 111 | + self.image_size = image_size |
| 112 | + self.model = model |
| 113 | + self.embedding_dimension = embedding_dimension |
| 114 | + self.embedding_type = embedding_type |
| 115 | + self.progress_bar = progress_bar |
| 116 | + |
| 117 | + self._api_key = api_key |
| 118 | + self._api_base_url = api_base_url |
| 119 | + self._timeout = timeout |
| 120 | + |
| 121 | + self._client = ClientV2( |
| 122 | + api_key=self._api_key.resolve_value(), |
| 123 | + base_url=self._api_base_url, |
| 124 | + timeout=self._timeout, |
| 125 | + client_name="haystack", |
| 126 | + ) |
| 127 | + self._async_client = AsyncClientV2( |
| 128 | + api_key=self._api_key.resolve_value(), |
| 129 | + base_url=self._api_base_url, |
| 130 | + timeout=self._timeout, |
| 131 | + client_name="haystack", |
| 132 | + ) |
| 133 | + |
| 134 | + def to_dict(self) -> dict[str, Any]: |
| 135 | + """ |
| 136 | + Serializes the component to a dictionary. |
| 137 | +
|
| 138 | + :returns: |
| 139 | + Dictionary with serialized data. |
| 140 | + """ |
| 141 | + serialization_dict = default_to_dict( |
| 142 | + self, |
| 143 | + file_path_meta_field=self.file_path_meta_field, |
| 144 | + root_path=self.root_path, |
| 145 | + image_size=self.image_size, |
| 146 | + model=self.model, |
| 147 | + progress_bar=self.progress_bar, |
| 148 | + api_key=self._api_key.to_dict(), |
| 149 | + api_base_url=self._api_base_url, |
| 150 | + timeout=self._timeout, |
| 151 | + embedding_dimension=self.embedding_dimension, |
| 152 | + embedding_type=self.embedding_type.value, |
| 153 | + ) |
| 154 | + return serialization_dict |
| 155 | + |
| 156 | + @classmethod |
| 157 | + def from_dict(cls, data: dict[str, Any]) -> "CohereDocumentImageEmbedder": |
| 158 | + """ |
| 159 | + Deserializes the component from a dictionary. |
| 160 | +
|
| 161 | + :param data: |
| 162 | + Dictionary to deserialize from. |
| 163 | + :returns: |
| 164 | + Deserialized component. |
| 165 | + """ |
| 166 | + init_params = data["init_parameters"] |
| 167 | + deserialize_secrets_inplace(init_params, keys=["api_key"]) |
| 168 | + init_params["embedding_type"] = EmbeddingTypes.from_str(init_params["embedding_type"]) |
| 169 | + |
| 170 | + return default_from_dict(cls, data) |
| 171 | + |
| 172 | + def _extract_images_to_embed(self, documents: list[Document]) -> list[str]: |
| 173 | + """ |
| 174 | + Validates the input documents and extracts the images to embed in the format expected by the Cohere API. |
| 175 | +
|
| 176 | + :param documents: |
| 177 | + Documents to embed. |
| 178 | +
|
| 179 | + :returns: |
| 180 | + List of images to embed in the format expected by the Cohere API. |
| 181 | +
|
| 182 | + :raises TypeError: |
| 183 | + If the input is not a list of `Documents`. |
| 184 | + :raises ValueError: |
| 185 | + If the input contains unsupported image MIME types. |
| 186 | + :raises RuntimeError: |
| 187 | + If the conversion of some documents fails. |
| 188 | + """ |
| 189 | + if not isinstance(documents, list) or not all(isinstance(d, Document) for d in documents): |
| 190 | + msg = ( |
| 191 | + "CohereDocumentImageEmbedder expects a list of Documents as input. " |
| 192 | + "In case you want to embed a string, please use the CohereTextEmbedder." |
| 193 | + ) |
| 194 | + raise TypeError(msg) |
| 195 | + |
| 196 | + images_source_info = _extract_image_sources_info( |
| 197 | + documents=documents, file_path_meta_field=self.file_path_meta_field, root_path=self.root_path |
| 198 | + ) |
| 199 | + |
| 200 | + for img_info in images_source_info: |
| 201 | + if img_info["mime_type"] not in SUPPORTED_IMAGE_MIME_TYPES: |
| 202 | + msg = ( |
| 203 | + f"Unsupported image MIME type: {img_info['mime_type']}. " |
| 204 | + f"Supported types are: {', '.join(SUPPORTED_IMAGE_MIME_TYPES)}" |
| 205 | + ) |
| 206 | + raise ValueError(msg) |
| 207 | + |
| 208 | + images_to_embed: list[Optional[str]] = [None] * len(documents) |
| 209 | + pdf_page_infos: list[_PDFPageInfo] = [] |
| 210 | + |
| 211 | + for doc_idx, image_source_info in enumerate(images_source_info): |
| 212 | + if image_source_info["mime_type"] == "application/pdf": |
| 213 | + # Store PDF documents for later processing |
| 214 | + page_number = image_source_info.get("page_number") |
| 215 | + assert page_number is not None # checked in _extract_image_sources_info but mypy doesn't know that |
| 216 | + pdf_page_info: _PDFPageInfo = { |
| 217 | + "doc_idx": doc_idx, |
| 218 | + "path": image_source_info["path"], |
| 219 | + "page_number": page_number, |
| 220 | + } |
| 221 | + pdf_page_infos.append(pdf_page_info) |
| 222 | + else: |
| 223 | + # Process images directly |
| 224 | + image_byte_stream = ByteStream.from_file_path( |
| 225 | + filepath=image_source_info["path"], mime_type=image_source_info["mime_type"] |
| 226 | + ) |
| 227 | + mime_type, base64_image = _encode_image_to_base64(bytestream=image_byte_stream, size=self.image_size) |
| 228 | + images_to_embed[doc_idx] = f"data:{mime_type};base64,{base64_image}" |
| 229 | + |
| 230 | + base64_jpeg_images_by_doc_idx = _batch_convert_pdf_pages_to_images( |
| 231 | + pdf_page_infos=pdf_page_infos, return_base64=True, size=self.image_size |
| 232 | + ) |
| 233 | + for doc_idx, base64_jpeg_image in base64_jpeg_images_by_doc_idx.items(): |
| 234 | + images_to_embed[doc_idx] = f"data:image/jpeg;base64,{base64_jpeg_image}" |
| 235 | + |
| 236 | + none_images_doc_ids = [documents[doc_idx].id for doc_idx, image in enumerate(images_to_embed) if image is None] |
| 237 | + if none_images_doc_ids: |
| 238 | + msg = f"Conversion failed for some documents. Document IDs: {none_images_doc_ids}." |
| 239 | + raise RuntimeError(msg) |
| 240 | + |
| 241 | + # tested above that image is not None, but mypy doesn't know that |
| 242 | + return images_to_embed # type: ignore[return-value] |
| 243 | + |
| 244 | + @component.output_types(documents=list[Document]) |
| 245 | + def run(self, documents: list[Document]) -> dict[str, list[Document]]: |
| 246 | + """ |
| 247 | + Embed a list of image documents. |
| 248 | +
|
| 249 | + :param documents: |
| 250 | + Documents to embed. |
| 251 | +
|
| 252 | + :returns: |
| 253 | + A dictionary with the following keys: |
| 254 | + - `documents`: Documents with embeddings. |
| 255 | + """ |
| 256 | + |
| 257 | + images_to_embed = self._extract_images_to_embed(documents) |
| 258 | + |
| 259 | + embeddings = [] |
| 260 | + |
| 261 | + # The Cohere API only supports passing one image at a time |
| 262 | + for doc, image in tqdm(zip(documents, images_to_embed), desc="Embedding images", disable=not self.progress_bar): |
| 263 | + try: |
| 264 | + response = self._client.embed( |
| 265 | + model=self.model, |
| 266 | + images=[image], |
| 267 | + input_type="image", |
| 268 | + output_dimension=self.embedding_dimension, |
| 269 | + embedding_types=[self.embedding_type.value], |
| 270 | + ) |
| 271 | + embedding = getattr(response.embeddings, self.embedding_type.value)[0] |
| 272 | + except Exception as e: |
| 273 | + msg = f"Error embedding Document {doc.id}" |
| 274 | + raise RuntimeError(msg) from e |
| 275 | + |
| 276 | + embeddings.append(embedding) |
| 277 | + |
| 278 | + docs_with_embeddings = [] |
| 279 | + for doc, emb in zip(documents, embeddings): |
| 280 | + # we store this information for later inspection |
| 281 | + new_meta = { |
| 282 | + **doc.meta, |
| 283 | + "embedding_source": {"type": "image", "file_path_meta_field": self.file_path_meta_field}, |
| 284 | + } |
| 285 | + new_doc = replace(doc, meta=new_meta, embedding=emb) |
| 286 | + docs_with_embeddings.append(new_doc) |
| 287 | + |
| 288 | + return {"documents": docs_with_embeddings} |
| 289 | + |
| 290 | + @component.output_types(documents=list[Document]) |
| 291 | + async def run_async(self, documents: list[Document]) -> dict[str, list[Document]]: |
| 292 | + """ |
| 293 | + Asynchronously embed a list of image documents. |
| 294 | +
|
| 295 | + :param documents: |
| 296 | + Documents to embed. |
| 297 | +
|
| 298 | + :returns: |
| 299 | + A dictionary with the following keys: |
| 300 | + - `documents`: Documents with embeddings. |
| 301 | + """ |
| 302 | + |
| 303 | + images_to_embed = self._extract_images_to_embed(documents) |
| 304 | + |
| 305 | + embeddings = [] |
| 306 | + |
| 307 | + # The Cohere API only supports passing one image at a time |
| 308 | + for doc, image in tqdm(zip(documents, images_to_embed), desc="Embedding images", disable=not self.progress_bar): |
| 309 | + try: |
| 310 | + response = await self._async_client.embed( |
| 311 | + model=self.model, |
| 312 | + images=[image], |
| 313 | + input_type="image", |
| 314 | + output_dimension=self.embedding_dimension, |
| 315 | + embedding_types=[self.embedding_type.value], |
| 316 | + ) |
| 317 | + embedding = getattr(response.embeddings, self.embedding_type.value)[0] |
| 318 | + except Exception as e: |
| 319 | + msg = f"Error embedding Document {doc.id}" |
| 320 | + raise RuntimeError(msg) from e |
| 321 | + |
| 322 | + embeddings.append(embedding) |
| 323 | + |
| 324 | + docs_with_embeddings = [] |
| 325 | + for doc, emb in zip(documents, embeddings): |
| 326 | + # we store this information for later inspection |
| 327 | + new_meta = { |
| 328 | + **doc.meta, |
| 329 | + "embedding_source": {"type": "image", "file_path_meta_field": self.file_path_meta_field}, |
| 330 | + } |
| 331 | + new_doc = replace(doc, meta=new_meta, embedding=emb) |
| 332 | + docs_with_embeddings.append(new_doc) |
| 333 | + |
| 334 | + return {"documents": docs_with_embeddings} |
0 commit comments