|
| 1 | +/* |
| 2 | + * Copyright 2021 The Emscripten Authors. All rights reserved. |
| 3 | + * Emscripten is available under two separate licenses, the MIT license and the |
| 4 | + * University of Illinois/NCSA Open Source License. Both these licenses can be |
| 5 | + * found in the LICENSE file. |
| 6 | + */ |
| 7 | + |
| 8 | +#include <assert.h> |
| 9 | +#include <emscripten/threading.h> |
| 10 | +#include <pthread.h> |
| 11 | +#include <stdlib.h> |
| 12 | +#include <string.h> |
| 13 | + |
| 14 | +#include "proxying.h" |
| 15 | + |
| 16 | +#define TASK_QUEUE_INITIAL_CAPACITY 128 |
| 17 | + |
| 18 | +extern int _emscripten_notify_proxying_queue(pthread_t target_thread, |
| 19 | + pthread_t curr_thread, |
| 20 | + pthread_t main_thread, |
| 21 | + em_proxying_queue* queue); |
| 22 | + |
| 23 | +typedef struct task { |
| 24 | + void (*func)(void*); |
| 25 | + void* arg; |
| 26 | +} task; |
| 27 | + |
| 28 | +// A task queue for a particular thread. Organized into a linked list of |
| 29 | +// task_queues for different threads. |
| 30 | +typedef struct task_queue { |
| 31 | + // The target thread for this task_queue. |
| 32 | + pthread_t thread; |
| 33 | + // Recursion guard. TODO: We disallow recursive processing because that's what |
| 34 | + // the old proxying API does, so it is safer to start with the same behavior. |
| 35 | + // Experiment with relaxing this restriction once the old API uses these |
| 36 | + // queues as well. |
| 37 | + int processing; |
| 38 | + // Ring buffer of tasks of size `capacity`. New tasks are enqueued at |
| 39 | + // `tail` and dequeued at `head`. |
| 40 | + task* tasks; |
| 41 | + int capacity; |
| 42 | + int head; |
| 43 | + int tail; |
| 44 | +} task_queue; |
| 45 | + |
| 46 | +static int task_queue_init(task_queue* tasks, pthread_t thread) { |
| 47 | + task* task_buffer = malloc(sizeof(task) * TASK_QUEUE_INITIAL_CAPACITY); |
| 48 | + if (task_buffer == NULL) { |
| 49 | + return 0; |
| 50 | + } |
| 51 | + *tasks = (task_queue){.thread = thread, |
| 52 | + .processing = 0, |
| 53 | + .tasks = task_buffer, |
| 54 | + .capacity = TASK_QUEUE_INITIAL_CAPACITY, |
| 55 | + .head = 0, |
| 56 | + .tail = 0}; |
| 57 | + return 1; |
| 58 | +} |
| 59 | + |
| 60 | +static void task_queue_deinit(task_queue* tasks) { free(tasks->tasks); } |
| 61 | + |
| 62 | +// Not thread safe. |
| 63 | +static int task_queue_is_empty(task_queue* tasks) { |
| 64 | + return tasks->head == tasks->tail; |
| 65 | +} |
| 66 | + |
| 67 | +// Not thread safe. |
| 68 | +static int task_queue_full(task_queue* tasks) { |
| 69 | + return tasks->head == (tasks->tail + 1) % tasks->capacity; |
| 70 | +} |
| 71 | + |
| 72 | +// // Not thread safe. Returns 1 on success and 0 on failure. |
| 73 | +static int task_queue_grow(task_queue* tasks) { |
| 74 | + // Allocate a larger task queue. |
| 75 | + int new_capacity = tasks->capacity * 2; |
| 76 | + task* new_tasks = malloc(sizeof(task) * new_capacity); |
| 77 | + if (new_tasks == NULL) { |
| 78 | + return 0; |
| 79 | + } |
| 80 | + // Copy the tasks such that the head of the queue is at the beginning of the |
| 81 | + // buffer. There are two cases to handle: either the queue wraps around the |
| 82 | + // end of the old buffer or it does not. |
| 83 | + int queued_tasks; |
| 84 | + if (tasks->head <= tasks->tail) { |
| 85 | + // No wrap. Copy the tasks in one chunk. |
| 86 | + queued_tasks = tasks->tail - tasks->head; |
| 87 | + memcpy(new_tasks, &tasks->tasks[tasks->head], sizeof(task) * queued_tasks); |
| 88 | + } else { |
| 89 | + // Wrap. Copy `first_queued` tasks up to the end of the old buffer and |
| 90 | + // `last_queued` tasks at the beginning of the old buffer. |
| 91 | + int first_queued = tasks->capacity - tasks->head; |
| 92 | + int last_queued = tasks->tail; |
| 93 | + queued_tasks = first_queued + last_queued; |
| 94 | + memcpy(new_tasks, &tasks->tasks[tasks->head], sizeof(task) * first_queued); |
| 95 | + memcpy(new_tasks + first_queued, tasks->tasks, sizeof(task) * last_queued); |
| 96 | + } |
| 97 | + free(tasks->tasks); |
| 98 | + tasks->tasks = new_tasks; |
| 99 | + tasks->capacity = new_capacity; |
| 100 | + tasks->head = 0; |
| 101 | + tasks->tail = queued_tasks; |
| 102 | + return 1; |
| 103 | +} |
| 104 | + |
| 105 | +// Not thread safe. Returns 1 on success and 0 on failure. |
| 106 | +static int task_queue_enqueue(task_queue* tasks, task t) { |
| 107 | + if (task_queue_full(tasks) && !task_queue_grow(tasks)) { |
| 108 | + return 0; |
| 109 | + } |
| 110 | + tasks->tasks[tasks->tail] = t; |
| 111 | + tasks->tail = (tasks->tail + 1) % tasks->capacity; |
| 112 | + return 1; |
| 113 | +} |
| 114 | + |
| 115 | +// Not thread safe. Assumes the queue is not empty. |
| 116 | +static task task_queue_dequeue(task_queue* tasks) { |
| 117 | + task t = tasks->tasks[tasks->head]; |
| 118 | + tasks->head = (tasks->head + 1) % tasks->capacity; |
| 119 | + return t; |
| 120 | +} |
| 121 | + |
| 122 | +struct em_proxying_queue { |
| 123 | + // Protects all accesses to all task_queues. |
| 124 | + pthread_mutex_t mutex; |
| 125 | + // `size` task queues stored in an array of size `capacity`. |
| 126 | + task_queue* task_queues; |
| 127 | + int size; |
| 128 | + int capacity; |
| 129 | +}; |
| 130 | + |
| 131 | +static em_proxying_queue system_proxying_queue = {.mutex = |
| 132 | + PTHREAD_MUTEX_INITIALIZER, |
| 133 | + .task_queues = NULL, |
| 134 | + .size = 0, |
| 135 | + .capacity = 0}; |
| 136 | + |
| 137 | +em_proxying_queue* emscripten_proxy_get_system_queue(void) { |
| 138 | + return &system_proxying_queue; |
| 139 | +} |
| 140 | + |
| 141 | +em_proxying_queue* em_proxying_queue_create(void) { |
| 142 | + em_proxying_queue* q = malloc(sizeof(em_proxying_queue)); |
| 143 | + if (q == NULL) { |
| 144 | + return NULL; |
| 145 | + } |
| 146 | + *q = (em_proxying_queue){.mutex = PTHREAD_MUTEX_INITIALIZER, |
| 147 | + .task_queues = NULL, |
| 148 | + .size = 0, |
| 149 | + .capacity = 0}; |
| 150 | + return q; |
| 151 | +} |
| 152 | + |
| 153 | +void em_proxying_queue_destroy(em_proxying_queue* q) { |
| 154 | + assert(q != NULL); |
| 155 | + assert(q != &system_proxying_queue && "cannot destroy system proxying queue"); |
| 156 | + // No need to acquire the lock; no one should be racing with the destruction |
| 157 | + // of the queue. |
| 158 | + pthread_mutex_destroy(&q->mutex); |
| 159 | + for (int i = 0; i < q->size; i++) { |
| 160 | + task_queue_deinit(&q->task_queues[i]); |
| 161 | + } |
| 162 | + free(q->task_queues); |
| 163 | + free(q); |
| 164 | +} |
| 165 | + |
| 166 | +// Not thread safe. Returns -1 if there are no tasks for the thread. |
| 167 | +static int get_tasks_index_for_thread(em_proxying_queue* q, pthread_t thread) { |
| 168 | + assert(q != NULL); |
| 169 | + for (int i = 0; i < q->size; i++) { |
| 170 | + if (pthread_equal(q->task_queues[i].thread, thread)) { |
| 171 | + return i; |
| 172 | + } |
| 173 | + } |
| 174 | + return -1; |
| 175 | +} |
| 176 | + |
| 177 | +// Not thread safe. |
| 178 | +static task_queue* get_or_add_tasks_for_thread(em_proxying_queue* q, |
| 179 | + pthread_t thread) { |
| 180 | + int tasks_index = get_tasks_index_for_thread(q, thread); |
| 181 | + if (tasks_index != -1) { |
| 182 | + return &q->task_queues[tasks_index]; |
| 183 | + } |
| 184 | + // There were no tasks for the thread; initialize a new task_queue. If there |
| 185 | + // are not enough queues, allocate more. |
| 186 | + if (q->size == q->capacity) { |
| 187 | + int new_capacity = q->capacity == 0 ? 1 : q->capacity * 2; |
| 188 | + task_queue* new_task_queues = |
| 189 | + realloc(q->task_queues, sizeof(task_queue) * new_capacity); |
| 190 | + if (new_task_queues == NULL) { |
| 191 | + return NULL; |
| 192 | + } |
| 193 | + q->task_queues = new_task_queues; |
| 194 | + q->capacity = new_capacity; |
| 195 | + } |
| 196 | + // Initialize the next available task queue. |
| 197 | + task_queue* tasks = &q->task_queues[q->size]; |
| 198 | + if (!task_queue_init(tasks, thread)) { |
| 199 | + return NULL; |
| 200 | + } |
| 201 | + q->size++; |
| 202 | + return tasks; |
| 203 | +} |
| 204 | + |
| 205 | +// Exported for use in worker.js. |
| 206 | +EMSCRIPTEN_KEEPALIVE |
| 207 | +void emscripten_proxy_execute_queue(em_proxying_queue* q) { |
| 208 | + assert(q != NULL); |
| 209 | + pthread_mutex_lock(&q->mutex); |
| 210 | + int tasks_index = get_tasks_index_for_thread(q, pthread_self()); |
| 211 | + task_queue* tasks = tasks_index == -1 ? NULL : &q->task_queues[tasks_index]; |
| 212 | + if (tasks == NULL || tasks->processing) { |
| 213 | + // No tasks for this thread or they are already being processed. |
| 214 | + pthread_mutex_unlock(&q->mutex); |
| 215 | + return; |
| 216 | + } |
| 217 | + // Found the task queue; process the tasks. |
| 218 | + tasks->processing = 1; |
| 219 | + while (!task_queue_is_empty(tasks)) { |
| 220 | + task t = task_queue_dequeue(tasks); |
| 221 | + // Unlock while the task is running to allow more work to be queued in |
| 222 | + // parallel. |
| 223 | + pthread_mutex_unlock(&q->mutex); |
| 224 | + t.func(t.arg); |
| 225 | + pthread_mutex_lock(&q->mutex); |
| 226 | + // The tasks might have been reallocated, so recalculate the pointer. |
| 227 | + tasks = &q->task_queues[tasks_index]; |
| 228 | + } |
| 229 | + tasks->processing = 0; |
| 230 | + pthread_mutex_unlock(&q->mutex); |
| 231 | +} |
| 232 | + |
| 233 | +int emscripten_proxy_async(em_proxying_queue* q, |
| 234 | + pthread_t target_thread, |
| 235 | + void (*func)(void*), |
| 236 | + void* arg) { |
| 237 | + assert(q != NULL); |
| 238 | + pthread_mutex_lock(&q->mutex); |
| 239 | + task_queue* tasks = get_or_add_tasks_for_thread(q, target_thread); |
| 240 | + if (tasks == NULL) { |
| 241 | + goto failed; |
| 242 | + } |
| 243 | + int empty = task_queue_is_empty(tasks); |
| 244 | + if (!task_queue_enqueue(tasks, (task){func, arg})) { |
| 245 | + goto failed; |
| 246 | + } |
| 247 | + pthread_mutex_unlock(&q->mutex); |
| 248 | + // If the queue was previously empty, notify the target thread to process it. |
| 249 | + // Otherwise, the target thread was already notified when the existing work |
| 250 | + // was enqueued so we don't need to notify it again. |
| 251 | + if (empty) { |
| 252 | + _emscripten_notify_proxying_queue( |
| 253 | + target_thread, pthread_self(), emscripten_main_browser_thread_id(), q); |
| 254 | + } |
| 255 | + return 1; |
| 256 | + |
| 257 | +failed: |
| 258 | + pthread_mutex_unlock(&q->mutex); |
| 259 | + return 0; |
| 260 | +} |
| 261 | + |
| 262 | +struct em_proxying_ctx { |
| 263 | + // The user-provided function and argument. |
| 264 | + void (*func)(em_proxying_ctx*, void*); |
| 265 | + void* arg; |
| 266 | + // Set `done` to 1 and signal the condition variable once the proxied task is |
| 267 | + // done. |
| 268 | + int done; |
| 269 | + pthread_mutex_t mutex; |
| 270 | + pthread_cond_t cond; |
| 271 | +}; |
| 272 | + |
| 273 | +static void em_proxying_ctx_init(em_proxying_ctx* ctx, |
| 274 | + void (*func)(em_proxying_ctx*, void*), |
| 275 | + void* arg) { |
| 276 | + *ctx = (em_proxying_ctx){.func = func, |
| 277 | + .arg = arg, |
| 278 | + .done = 0, |
| 279 | + .mutex = PTHREAD_MUTEX_INITIALIZER, |
| 280 | + .cond = PTHREAD_COND_INITIALIZER}; |
| 281 | +} |
| 282 | + |
| 283 | +static void em_proxying_ctx_deinit(em_proxying_ctx* ctx) { |
| 284 | + pthread_mutex_destroy(&ctx->mutex); |
| 285 | + pthread_cond_destroy(&ctx->cond); |
| 286 | +} |
| 287 | + |
| 288 | +void emscripten_proxy_finish(em_proxying_ctx* ctx) { |
| 289 | + pthread_mutex_lock(&ctx->mutex); |
| 290 | + ctx->done = 1; |
| 291 | + pthread_mutex_unlock(&ctx->mutex); |
| 292 | + pthread_cond_signal(&ctx->cond); |
| 293 | +} |
| 294 | + |
| 295 | +// Helper for wrapping the call with ctx as a `void (*)(void*)`. |
| 296 | +static void call_with_ctx(void* p) { |
| 297 | + em_proxying_ctx* ctx = (em_proxying_ctx*)p; |
| 298 | + ctx->func(ctx, ctx->arg); |
| 299 | +} |
| 300 | + |
| 301 | +int emscripten_proxy_sync_with_ctx(em_proxying_queue* q, |
| 302 | + pthread_t target_thread, |
| 303 | + void (*func)(em_proxying_ctx*, void*), |
| 304 | + void* arg) { |
| 305 | + assert(!pthread_equal(target_thread, pthread_self()) && |
| 306 | + "Cannot synchronously wait for work proxied to the current thread"); |
| 307 | + em_proxying_ctx ctx; |
| 308 | + em_proxying_ctx_init(&ctx, func, arg); |
| 309 | + if (!emscripten_proxy_async(q, target_thread, call_with_ctx, &ctx)) { |
| 310 | + return 0; |
| 311 | + } |
| 312 | + pthread_mutex_lock(&ctx.mutex); |
| 313 | + while (!ctx.done) { |
| 314 | + pthread_cond_wait(&ctx.cond, &ctx.mutex); |
| 315 | + } |
| 316 | + pthread_mutex_unlock(&ctx.mutex); |
| 317 | + em_proxying_ctx_deinit(&ctx); |
| 318 | + return 1; |
| 319 | +} |
| 320 | + |
| 321 | +// Helper for signaling the end of the task after the user function returns. |
| 322 | +static void call_then_finish(em_proxying_ctx* ctx, void* arg) { |
| 323 | + task* t = (task*)arg; |
| 324 | + t->func(t->arg); |
| 325 | + emscripten_proxy_finish(ctx); |
| 326 | +} |
| 327 | + |
| 328 | +int emscripten_proxy_sync(em_proxying_queue* q, |
| 329 | + pthread_t target_thread, |
| 330 | + void (*func)(void*), |
| 331 | + void* arg) { |
| 332 | + task t = {func, arg}; |
| 333 | + return emscripten_proxy_sync_with_ctx(q, target_thread, call_then_finish, &t); |
| 334 | +} |
0 commit comments