Scripts and convolutional autoencoder model used for applying transfer learning in seizure prediction.
- Fábio Lopes
- Mauro F. Pinto
- António Dourado
- Andreas Schulze-Bonhage
- Matthias Dümpelmann
- César Teixeira
test_seizure_prediction_model_tl.pycontains the code necessary to develop patient-specific models (it uses theseizure_prediction_model_cnn_lstm_autoencoder_128_last_approach.h5as a transfer learning model). It also uses the statistics (average and standard deviation) from the dataset used to train the transfer learning model (standardisation_values_cnn_lstm_autoencoder_128_last_approach.npy).seizure_prediction_model_cnn_lstm_autoencoder_128_last_approach.h5contains the weights of the transfer learning model in HDF5 file format.standardisation_values_cnn_lstm_autoencoder_128_last_approach.npycontains the average and standard deviation of the dataset used to train the transfer learning model.utils.pycontains general functions used in thetest_seizure_prediction_model_tl.py.
- Python 3.7
- Tensorflow 2.6.0
- Numpy 1.19.5
- Lopes, F., Pinto, M.F., Dourado, A. et al. Addressing data limitations in seizure prediction through transfer learning. Sci Rep 14, 14169 (2024). https://doi.org/10.1038/s41598-024-64802-1