Skip to content

fabioacl/Transfer-learning-on-seizure-prediction

Repository files navigation

Addressing data limitations in seizure prediction through transfer learning

Scripts and convolutional autoencoder model used for applying transfer learning in seizure prediction.

Authors

  • Fábio Lopes
  • Mauro F. Pinto
  • António Dourado
  • Andreas Schulze-Bonhage
  • Matthias Dümpelmann
  • César Teixeira

Files

  • test_seizure_prediction_model_tl.py contains the code necessary to develop patient-specific models (it uses the seizure_prediction_model_cnn_lstm_autoencoder_128_last_approach.h5 as a transfer learning model). It also uses the statistics (average and standard deviation) from the dataset used to train the transfer learning model (standardisation_values_cnn_lstm_autoencoder_128_last_approach.npy).
  • seizure_prediction_model_cnn_lstm_autoencoder_128_last_approach.h5 contains the weights of the transfer learning model in HDF5 file format.
  • standardisation_values_cnn_lstm_autoencoder_128_last_approach.npy contains the average and standard deviation of the dataset used to train the transfer learning model.
  • utils.py contains general functions used in the test_seizure_prediction_model_tl.py.

Requirements

  • Python 3.7
  • Tensorflow 2.6.0
  • Numpy 1.19.5

Scientific Paper

About

Scripts and convolutional autoencoder model used for applying transfer learning in seizure prediction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages