|
| 1 | +package singleton.ops.impl |
| 2 | + |
| 3 | +import singleton.ops._ |
| 4 | + |
| 5 | +/** Represents a fraction |
| 6 | + * |
| 7 | + * @tparam N the numerator |
| 8 | + * @tparam D the denominator |
| 9 | + */ |
| 10 | +trait Fraction[N <: XInt, D <: XInt] |
| 11 | + |
| 12 | +object Fraction { |
| 13 | + |
| 14 | + /** Typeclass for finding the greatest common divisor of two numbers using Euclid's algorithm. |
| 15 | + * |
| 16 | + * @tparam A a non-zero natural number |
| 17 | + * @tparam B another non-zero natural number |
| 18 | + */ |
| 19 | + trait GCD[A <: XInt, B <: XInt] { |
| 20 | + type Out <: XInt |
| 21 | + } |
| 22 | + |
| 23 | + object GCD { |
| 24 | + type Aux[A <: XInt, B <: XInt, Out0 <: XInt] = GCD[A, B] { type Out = Out0 } |
| 25 | + |
| 26 | + implicit def fractionBaseGCD[A <: XInt, B <: XInt, Rem <: XInt]( |
| 27 | + implicit ev0: Require[A >= B], |
| 28 | + ev1: OpInt.Aux[A % B, Rem], |
| 29 | + ev2: Require[Rem == W.`0`.T]): Aux[A, B, B] = new GCD[A, B] { |
| 30 | + type Out = B |
| 31 | + } |
| 32 | + |
| 33 | + implicit def fractionRecurseGCD[A <: XInt, |
| 34 | + B <: XInt, |
| 35 | + Rem <: XInt, |
| 36 | + D <: XInt]( |
| 37 | + implicit ev0: Require[A >= B], |
| 38 | + ev1: OpInt.Aux[A % B, Rem], |
| 39 | + ev2: Require[Rem != W.`0`.T], |
| 40 | + ev3: Aux[B, Rem, D]): Aux[A, B, D] = new GCD[A, B] { |
| 41 | + type Out = D |
| 42 | + } |
| 43 | + |
| 44 | + implicit def fractionRecurseGCD1[A <: XInt, |
| 45 | + B <: XInt, |
| 46 | + Rem <: XInt, |
| 47 | + D <: XInt]( |
| 48 | + implicit ev0: Require[B < A], |
| 49 | + ev1: Aux[A, B, D]): Aux[B, A, D] = new GCD[B, A] { |
| 50 | + type Out = D |
| 51 | + } |
| 52 | + } |
| 53 | + |
| 54 | + /** Typeclass for negating a fraction */ |
| 55 | + trait Negate[F <: Fraction[_, _]] { |
| 56 | + type Out <: Fraction[_, _] |
| 57 | + } |
| 58 | + |
| 59 | + object Negate { |
| 60 | + type Aux[F <: Fraction[_, _], Out0 <: Fraction[_, _]] = Negate[F] { |
| 61 | + type Out = Out0 |
| 62 | + } |
| 63 | + |
| 64 | + implicit def fractionNegate[N <: XInt, D <: XInt, NN <: XInt]( |
| 65 | + implicit ev: OpInt.Aux[W.`0`.T - N, NN] |
| 66 | + ): Aux[Fraction[N, D], Fraction[NN, D]] = new Negate[Fraction[N, D]] { |
| 67 | + type Out = Fraction[NN, D] |
| 68 | + } |
| 69 | + } |
| 70 | + |
| 71 | + /** Typeclass to simplify a fraction */ |
| 72 | + trait Simplify[F <: Fraction[_, _]] { |
| 73 | + type Out <: Fraction[_, _] |
| 74 | + } |
| 75 | + |
| 76 | + object Simplify { |
| 77 | + type Aux[F <: Fraction[_, _], Out0 <: Fraction[_, _]] = Simplify[F] { |
| 78 | + type Out = Out0 |
| 79 | + } |
| 80 | + |
| 81 | + implicit def fractionSimplifyPositive[N <: XInt, |
| 82 | + D <: XInt, |
| 83 | + C <: XInt, |
| 84 | + SN <: XInt, |
| 85 | + SD <: XInt]( |
| 86 | + implicit ev0: Require[N > W.`0`.T], |
| 87 | + gcd: GCD.Aux[N, D, C], |
| 88 | + n: OpInt.Aux[N / C, SN], |
| 89 | + d: OpInt.Aux[D / C, SD] |
| 90 | + ): Aux[Fraction[N, D], Fraction[SN, SD]] = new Simplify[Fraction[N, D]] { |
| 91 | + type Out = Fraction[SN, SD] |
| 92 | + } |
| 93 | + |
| 94 | + implicit def fractionSimplifyNegative[N <: XInt, |
| 95 | + D <: XInt, |
| 96 | + F <: Fraction[_, _], |
| 97 | + SNF <: Fraction[_, _], |
| 98 | + SF <: Fraction[_, _]]( |
| 99 | + implicit ev: Require[N < W.`0`.T], |
| 100 | + ev1: Negate.Aux[Fraction[N, D], F], |
| 101 | + ev2: Aux[F, SNF], |
| 102 | + ev3: Negate.Aux[SNF, SF]): Aux[Fraction[N, D], SF] = |
| 103 | + new Simplify[Fraction[N, D]] { |
| 104 | + type Out = SF |
| 105 | + } |
| 106 | + |
| 107 | + implicit def fractionSimplifyZero[D <: XInt] |
| 108 | + : Aux[Fraction[W.`0`.T, D], Fraction[W.`0`.T, D]] = new Simplify[Fraction[W.`0`.T, D]] { |
| 109 | + type Out = Fraction[W.`0`.T, D] |
| 110 | + } |
| 111 | + } |
| 112 | + |
| 113 | + /** Typeclass to add two fractions */ |
| 114 | + trait Add[L <: Fraction[_, _], R <: Fraction[_, _]] { |
| 115 | + type Out <: Fraction[_, _] |
| 116 | + } |
| 117 | + |
| 118 | + object Add { |
| 119 | + type Aux[L <: Fraction[_, _], R <: Fraction[_, _], Out0 <: Fraction[_, _]] = |
| 120 | + Add[L, R] { type Out = Out0 } |
| 121 | + |
| 122 | + implicit def fractionAdd[LN <: XInt, |
| 123 | + LD <: XInt, |
| 124 | + RN <: XInt, |
| 125 | + RD <: XInt, |
| 126 | + LNRD <: XInt, |
| 127 | + RNLD <: XInt, |
| 128 | + N <: XInt, |
| 129 | + D <: XInt, |
| 130 | + F <: Fraction[_, _]]( |
| 131 | + implicit ev0: OpInt.Aux[LN * RD, LNRD], |
| 132 | + ev1: OpInt.Aux[RN * LD, RNLD], |
| 133 | + ev2: OpInt.Aux[LNRD + RNLD, N], |
| 134 | + ev3: OpInt.Aux[LD * RD, D], |
| 135 | + ev4: Simplify.Aux[Fraction[N, D], F] |
| 136 | + ): Aux[Fraction[LN, LD], Fraction[RN, RD], F] = |
| 137 | + new Add[Fraction[LN, LD], Fraction[RN, RD]] { |
| 138 | + type Out = F |
| 139 | + } |
| 140 | + } |
| 141 | + |
| 142 | + /** Typeclass for subtracting fractions */ |
| 143 | + trait Subtract[L <: Fraction[_, _], R <: Fraction[_, _]] { |
| 144 | + type Out <: Fraction[_, _] |
| 145 | + } |
| 146 | + |
| 147 | + object Subtract { |
| 148 | + type Aux[L <: Fraction[_, _], R <: Fraction[_, _], Out0 <: Fraction[_, _]] = |
| 149 | + Subtract[L, R] { type Out = Out0 } |
| 150 | + |
| 151 | + implicit def fractionSubtract[L <: Fraction[_, _], |
| 152 | + R <: Fraction[_, _], |
| 153 | + NR <: Fraction[_, _], |
| 154 | + F <: Fraction[_, _]]( |
| 155 | + implicit ev0: Negate.Aux[R, NR], |
| 156 | + ev1: Add.Aux[L, NR, F] |
| 157 | + ): Aux[L, R, F] = new Subtract[L, R] { |
| 158 | + type Out = F |
| 159 | + } |
| 160 | + } |
| 161 | + |
| 162 | + /** Typeclass to multiply two fractions */ |
| 163 | + trait Multiply[L <: Fraction[_, _], R <: Fraction[_, _]] { |
| 164 | + type Out <: Fraction[_, _] |
| 165 | + } |
| 166 | + |
| 167 | + object Multiply { |
| 168 | + type Aux[L <: Fraction[_, _], R <: Fraction[_, _], Out0 <: Fraction[_, _]] = |
| 169 | + Multiply[L, R] { type Out = Out0 } |
| 170 | + |
| 171 | + implicit def fractionMultiply[LN <: XInt, |
| 172 | + LD <: XInt, |
| 173 | + RN <: XInt, |
| 174 | + RD <: XInt, |
| 175 | + N <: XInt, |
| 176 | + D <: XInt, |
| 177 | + F <: Fraction[_, _]]( |
| 178 | + implicit ev0: OpInt.Aux[LN * RN, N], |
| 179 | + ev1: OpInt.Aux[LD * RD, D], |
| 180 | + ev2: Simplify.Aux[Fraction[N, D], F] |
| 181 | + ): Aux[Fraction[LN, LD], Fraction[RN, RD], F] = |
| 182 | + new Multiply[Fraction[LN, LD], Fraction[RN, RD]] { |
| 183 | + type Out = F |
| 184 | + } |
| 185 | + } |
| 186 | + |
| 187 | + /** Typeclass to determine if a fraction is non-zero and finite */ |
| 188 | + trait Valid[F <: Fraction[_, _]] |
| 189 | + |
| 190 | + object Valid { |
| 191 | + implicit def valid[FN <: XInt, FD <: XInt]( |
| 192 | + implicit ev0: Require[FN != W.`0`.T], |
| 193 | + ev1: Require[FD != W.`0`.T]): Valid[Fraction[FN, FD]] = |
| 194 | + new Valid[Fraction[FN, FD]] {} |
| 195 | + } |
| 196 | +} |
0 commit comments