|
10 | 10 | from automatminer.featurization import AutoFeaturizer
|
11 | 11 | from automatminer.preprocessing import DataCleaner, FeatureReducer
|
12 | 12 | from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
13 |
| -from xgboost import XGBClassifier, XGBRegressor |
| 13 | +# from xgboost import XGBClassifier, XGBRegressor |
14 | 14 |
|
15 | 15 |
|
16 | 16 | def get_preset_config(preset: str = "express", **powerups) -> dict:
|
@@ -85,11 +85,11 @@ def get_preset_config(preset: str = "express", **powerups) -> dict:
|
85 | 85 | "cleaner": DataCleaner(),
|
86 | 86 | }
|
87 | 87 | elif preset == "express_single":
|
88 |
| - xgb_kwargs = {"n_estimators": 300, "max_depth": 3, "n_jobs": n_jobs_kwargs} |
| 88 | + rf_args = {"n_estimators": 500, "max_depth": 5, "n_jobs": n_jobs_kwargs} |
89 | 89 | config = {
|
90 | 90 | "learner": SinglePipelineAdaptor(
|
91 |
| - regressor=XGBRegressor(**xgb_kwargs), |
92 |
| - classifier=XGBClassifier(**xgb_kwargs), |
| 91 | + regressor=RandomForestRegressor(**rf_args), |
| 92 | + classifier=RandomForestClassifier(**rf_args), |
93 | 93 | ),
|
94 | 94 | "reducer": FeatureReducer(reducers=("corr",)),
|
95 | 95 | "autofeaturizer": AutoFeaturizer(
|
|
0 commit comments