@@ -85,21 +85,16 @@ def _cfg(url='', **kwargs):
85
85
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth' ),
86
86
'efficientnet_b1' : _cfg (
87
87
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth' ,
88
- input_size = (3 , 240 , 240 ), pool_size = ( 8 , 8 ) ),
88
+ test_input_size = (3 , 256 , 256 ), crop_pct = 1.0 ),
89
89
'efficientnet_b2' : _cfg (
90
90
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth' ,
91
- input_size = (3 , 260 , 260 ), pool_size = (9 , 9 )),
92
- 'efficientnet_b2a' : _cfg (
93
- url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth' ,
94
- input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ), crop_pct = 1.0 ),
91
+ input_size = (3 , 256 , 256 ), pool_size = (8 , 8 ), test_input_size = (3 , 288 , 288 ), crop_pct = 1.0 ),
95
92
'efficientnet_b3' : _cfg (
96
93
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth' ,
97
- input_size = (3 , 300 , 300 ), pool_size = (10 , 10 ), crop_pct = 0.904 ),
98
- 'efficientnet_b3a' : _cfg (
99
- url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth' ,
100
- input_size = (3 , 320 , 320 ), pool_size = (10 , 10 ), crop_pct = 1.0 ),
94
+ input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ), test_input_size = (3 , 320 , 320 ), crop_pct = 1.0 ),
101
95
'efficientnet_b4' : _cfg (
102
- url = '' , input_size = (3 , 380 , 380 ), pool_size = (12 , 12 ), crop_pct = 0.922 ),
96
+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b4_ra2_320-7eb33cd5.pth' ,
97
+ input_size = (3 , 320 , 320 ), pool_size = (10 , 10 ), test_input_size = (3 , 384 , 384 ), crop_pct = 1.0 ),
103
98
'efficientnet_b5' : _cfg (
104
99
url = '' , input_size = (3 , 456 , 456 ), pool_size = (15 , 15 ), crop_pct = 0.934 ),
105
100
'efficientnet_b6' : _cfg (
@@ -155,8 +150,8 @@ def _cfg(url='', **kwargs):
155
150
input_size = (3 , 300 , 300 ), pool_size = (10 , 10 ), crop_pct = 0.904 , mean = IMAGENET_INCEPTION_MEAN , std = IMAGENET_INCEPTION_STD ),
156
151
157
152
'efficientnet_v2s' : _cfg (
158
- url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_v2s_ra2-b265c1ba .pth' ,
159
- input_size = (3 , 224 , 224 ), test_input_size = (3 , 320 , 320 ), pool_size = (7 , 7 ), crop_pct = 1.0 ), # FIXME WIP
153
+ url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_v2s_ra2_288-a6477665 .pth' ,
154
+ input_size = (3 , 288 , 288 ), test_input_size = (3 , 384 , 384 ), pool_size = (9 , 9 ), crop_pct = 1.0 ), # FIXME WIP
160
155
161
156
'tf_efficientnet_b0' : _cfg (
162
157
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth' ,
@@ -1077,10 +1072,8 @@ def efficientnet_b2(pretrained=False, **kwargs):
1077
1072
@register_model
1078
1073
def efficientnet_b2a (pretrained = False , ** kwargs ):
1079
1074
""" EfficientNet-B2 @ 288x288 w/ 1.0 test crop"""
1080
- # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2
1081
- model = _gen_efficientnet (
1082
- 'efficientnet_b2a' , channel_multiplier = 1.1 , depth_multiplier = 1.2 , pretrained = pretrained , ** kwargs )
1083
- return model
1075
+ # WARN this model def is deprecated, different train/test res + test crop handled by default_cfg now
1076
+ return efficientnet_b2 (pretrained = pretrained , ** kwargs )
1084
1077
1085
1078
1086
1079
@register_model
@@ -1095,10 +1088,8 @@ def efficientnet_b3(pretrained=False, **kwargs):
1095
1088
@register_model
1096
1089
def efficientnet_b3a (pretrained = False , ** kwargs ):
1097
1090
""" EfficientNet-B3 @ 320x320 w/ 1.0 test crop-pct """
1098
- # NOTE for train, drop_rate should be 0.3, drop_path_rate should be 0.2
1099
- model = _gen_efficientnet (
1100
- 'efficientnet_b3a' , channel_multiplier = 1.2 , depth_multiplier = 1.4 , pretrained = pretrained , ** kwargs )
1101
- return model
1091
+ # WARN this model def is deprecated, different train/test res + test crop handled by default_cfg now
1092
+ return efficientnet_b3 (pretrained = pretrained , ** kwargs )
1102
1093
1103
1094
1104
1095
@register_model
0 commit comments