|
| 1 | +(** * Cubic-finned machine #3 (https://bbchallenge.org/10756090) *) |
| 2 | + |
| 3 | +From BusyCoq Require Import Individual52 Finned. |
| 4 | +Set Default Goal Selector "!". |
| 5 | + |
| 6 | +(* NOTE: this swaps L and R compared to the TNF form *) |
| 7 | +Definition tm : TM := fun '(q, s) => |
| 8 | + match q, s with |
| 9 | + | A, 0 => Some (1, L, B) | A, 1 => Some (1, L, E) |
| 10 | + | B, 0 => Some (1, R, C) | B, 1 => Some (1, L, B) |
| 11 | + | C, 0 => Some (0, L, A) | C, 1 => Some (0, R, D) |
| 12 | + | D, 0 => Some (1, R, B) | D, 1 => Some (1, R, D) |
| 13 | + | E, 0 => None | E, 1 => Some (0, L, A) |
| 14 | + end. |
| 15 | + |
| 16 | +Notation "c --> c'" := (c -[ tm ]-> c') (at level 40). |
| 17 | +Notation "c -->* c'" := (c -[ tm ]->* c') (at level 40). |
| 18 | +Notation "c -->+ c'" := (c -[ tm ]->+ c') (at level 40). |
| 19 | + |
| 20 | +Close Scope sym. |
| 21 | + |
| 22 | +Inductive I : Type := |
| 23 | + | I0 (a b : nat) (H : 2*a = b + 1) : I |
| 24 | + | I1 (a b : nat) (H : 2*a = b) : I |
| 25 | + | I2 (a b d : nat) (H : 2*a = b + 2*d + 1) : I |
| 26 | + | I3 (a b d : nat) (H : 2*a = b + 2*d + 2) : I |
| 27 | + | I4 (a d : nat) (H : a = d) : I |
| 28 | + | I5 (a b c d : nat) (H : 2*a + d = b + c) : I |
| 29 | + | I6 (a c d : nat) (H : 2*a + d = c) : I |
| 30 | + | I7 (a c d : nat) (H : 2*a + d = c) : I |
| 31 | + | I8 (a b c d : nat) (H : 2*a + d = b + c + 3) : I |
| 32 | + | I9 (a b d : nat) (H : 2*a + d = b + 2) : I |
| 33 | + . |
| 34 | + |
| 35 | +Open Scope sym. |
| 36 | + |
| 37 | +Definition f (i : I) : Q * tape := |
| 38 | + match i with |
| 39 | + | I0 a b _ => B;; |
| 40 | + const 0 <* [1]^^a << 0 <* [1]^^b {{0}} const 0 |
| 41 | + | I1 a b _ => C;; |
| 42 | + const 0 <* [1]^^a << 0 <* [1]^^b {{0}} const 0 |
| 43 | + | I2 a b d _ => A;; |
| 44 | + const 0 <* [1]^^a << 0 <* [1]^^b {{1}} [0; 1]^^d *> const 0 |
| 45 | + | I3 a b d _ => E;; |
| 46 | + const 0 <* [1]^^a << 0 <* [1]^^b {{1}} 1 >> [0; 1]^^d *> const 0 |
| 47 | + | I4 a d _ => A;; |
| 48 | + const 0 <* [1]^^a {{0}} [0; 1]^^d *> const 0 |
| 49 | + | I5 a b c d _ => B;; |
| 50 | + const 0 <* [1]^^a << 0 <* [1]^^b {{1}} [1]^^c *> [0; 1]^^d *> const 0 |
| 51 | + | I6 a c d _ => B;; |
| 52 | + const 0 <* [1]^^a {{0}} 1 >> [1]^^c *> [0; 1]^^d *> const 0 |
| 53 | + | I7 a c d _ => C;; |
| 54 | + const 0 <* [1]^^a << 1 {{1}} [1]^^c *> [0; 1]^^d *> const 0 |
| 55 | + | I8 a b c d _ => D;; |
| 56 | + const 0 <* [1]^^a << 0 <* [1]^^b {{1}} [1]^^c *> [0; 1]^^d *> const 0 |
| 57 | + | I9 a b d _ => D;; |
| 58 | + const 0 <* [1]^^a << 0 <* [1]^^b {{0}} [1; 0]^^d *> const 0 |
| 59 | + end. |
| 60 | + |
| 61 | +Theorem nonhalt : ~ halts tm c0. |
| 62 | +Proof. |
| 63 | + apply progress_nonhalt_simple with (C := f) (i0 := I4 0 0 eq_refl). |
| 64 | + intros []; finned. |
| 65 | +Qed. |
0 commit comments