You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[Inductor][FP8] Validate exhaustive autotuning for FP8 Inductor templates (pytorch#161442)
Summary:
X-link: meta-pytorch/tritonbench#355
Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested.
Test Plan:
```
CUDA_VISIBLE_DEVICES=0 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 ENABLE_PERSISTENT_TMA_MATMUL=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE=DEFAULT buck2 run mode/{opt,inplace} pytorch/t
ritonbench:run -- --op fp8_gemm --only torch_fp8_gemm,pt2_fp8_gemm --metrics tflops,accuracy --input-loader=/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/json_fi
les/rowwise_ptma_0.json --output="/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/autotune/gpu0_bench.csv" --atol=1e-2 --rtol=0.5 2>&1 | tee ~/personal/exhaustive_
autotune_rowwise_persistent_tma/autotune/gpu0.log
```
autotunes on the maximum configs available, rather than the defaults, and skips configs not compatible with TMA.
Rollback Plan:
Differential Revision: D80958642
0 commit comments