@@ -41,8 +41,7 @@ The proposed model only consists of **sparsely connected layers** without any fu
4141## Training
4242For training, this implementation fixes the random seed to ` 12321 ` for ` reproducibility ` .
4343
44- The experimental conditions are same as in the paper, except for ` data augmentation ` and ` learning rate ` .
45- The ` learning rate ` is initialized with ` 1e-3 ` and decreased by a factor of 0.1 ** after 26 epochs** .
44+ The experimental conditions are same as in the paper, except for ` data augmentation ` .
4645You can see the details in ` src/model/_base.py ` and ` experiments/config/AConvNet-SOC.json `
4746
4847### Data Augmentation
@@ -52,10 +51,9 @@ You can see the details in `src/model/_base.py` and `experiments/config/AConvNet
5251
5352- However, for SOC, this repository does not use random shifting tue to accuracy issue.
5453 - You can see the details in ` src/data/generate_dataset.py ` and ` src/data/mstar.py `
55- - This implementation failed to achieve higher than 98% accuracy when using random sampling.
5654 - The implementation details for data augmentation is as:
57- - Crop the center of 94 x 94 size image on 128 x 128 SAR image chip (49 patches per image chip).
58- - Extract 88 x 88 patches with stride 1 from 94 x 94 image.
55+ - Crop the center of 94 x 94 size image on 100 x 100 SAR image chip (49 patches per image chip).
56+ - Extract 88 x 88 patches with stride 1 from 94 x 94 image with random cropping .
5957
6058
6159## Experiments
@@ -141,14 +139,14 @@ MSTAR-PublicMixedTargets-CD1/MSTAR_PUBLIC_MIXED_TARGETS_CD1
141139 - Place the two directories (` train ` and ` test ` ) to the ` dataset/raw ` .
142140``` shell
143141$ cd src/data
144- $ python3 generate_dataset.py --is_train=True --use_phase=True --chip_size=94 --dataset=soc
145- $ python3 generate_dataset.py --is_train=False --use_phase=True --dataset=soc
142+ $ python3 generate_dataset.py --is_train=True --use_phase=True --chip_size=100 --patch_size=94 --use_phase=True --dataset=soc
143+ $ python3 generate_dataset.py --is_train=False --use_phase=True --chip_size=128 --patch_size=128 --use_phase=True -- dataset=soc
146144$ cd ..
147- $ python3 train.py
145+ $ python3 train.py --config_name=config/AConvNet-SOC.json
148146```
149147
150148#### Results of SOC
151- - Final Accuracy is ** 99.18 %** (The official accuracy is 99.13%)
149+ - Final Accuracy is ** 99.13 %** at epoch 26 (The official accuracy is 99.13%)
152150- You can see the details in ` notebook/experiments-SOC.ipynb `
153151
154152- Visualization of training loss and test accuracy
@@ -165,10 +163,10 @@ $ python3 train.py
165163
166164| Noise | 1% | 5% | 10% | 15%|
167165| :---: | :---: | :---: | :---: | :---: |
168- | AConvNet-PyTorch | 98.56 | 94.39 | 85.03 | 73.65 |
166+ | AConvNet-PyTorch | 98.60 | 95.18 | 85.36 | 73.24 |
169167| AConvNet-Official | 91.76 | 88.52 | 75.84 | 54.68 |
170168
171-
169+ <!--
172170### Extended Operating Conditions (EOC)
173171
174172#### EOC-1 (Large depression angle change)
@@ -216,15 +214,28 @@ MSTAR-PublicMixedTargets-CD2/MSTAR_PUBLIC_MIXED_TARGETS_CD2
216214└ ...
217215
218216```
219- - Train Target: 2S1, BRDM2, T72, ZSU234 with depression angle 17$\degree$
220- - Test Target: 2S1, BRDM2, T72, ZSU234 with depression angle 30$\degree$
217+
218+ #### Quick Start Guide for Training
219+
220+ - Dataset Preparation
221+ - Download the [soc-dataset.zip](https://github.com/jangsoopark/AConvNet-pytorch/releases/download/V2.0.0/soc-raw.zip)
222+ - After extracting it, you can find `train` and `test` directories inside `raw` directory.
223+ - Place the two directories (`train` and `test`) to the `dataset/raw`.
224+ ```shell
225+ $ cd src/data
226+ $ python3 generate_dataset.py --is_train=True --use_phase=True --chip_size=96 --dataset=eoc-1
227+ $ python3 generate_dataset.py --is_train=False --use_phase=True --dataset=soc
228+ $ cd ..
229+ $ python3 train.py --config_name=config/AConvNet-EOC-1.json
230+ ```
231+
221232
222233#### EOC-2 (Target configuration and version variants)
223234
224235### Outlier Rejection
225236
226237### End-to-End SAR-ATR Cases
227-
238+ -->
228239## Details about the specific environment of this repository
229240
230241| | |
0 commit comments