Skip to content

Commit 6c3650d

Browse files
authored
[Updated] App Platform LLM and RAG Pipeline guides (#7246)
1 parent fe42b21 commit 6c3650d

File tree

2 files changed

+14
-5
lines changed
  • docs/guides/kubernetes
    • deploy-llm-for-ai-inferencing-on-apl
    • deploy-rag-pipeline-and-chatbot-on-apl

2 files changed

+14
-5
lines changed

docs/guides/kubernetes/deploy-llm-for-ai-inferencing-on-apl/index.md

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@ description: "This guide includes steps and guidance for deploying a large langu
55
authors: ["Akamai"]
66
contributors: ["Akamai"]
77
published: 2025-03-25
8+
modified: 2025-04-17
89
keywords: ['ai','ai inference','ai inferencing','llm','large language model','app platform','lke','linode kubernetes engine','llama 3','kserve','istio','knative']
910
license: '[CC BY-ND 4.0](https://creativecommons.org/licenses/by-nd/4.0)'
1011
external_resources:
@@ -66,11 +67,14 @@ If you prefer to manually install an LLM and RAG Pipeline on LKE rather than usi
6667

6768
- Enrollment into the Akamai App Platform's [beta program](https://cloud.linode.com/betas).
6869

69-
- An provisioned and configured LKE cluster with App Platform enabled. We recommend an LKE cluster consisting of at least 3 RTX4000 Ada x1 Medium [GPU](https://techdocs.akamai.com/cloud-computing/docs/gpu-compute-instances) plans.
70+
## Set Up Infrastructure
7071

71-
To learn more about provisioning a LKE cluster with App Platform, see our [Getting Started with App Platform for LKE](https://techdocs.akamai.com/cloud-computing/docs/getting-started-with-akamai-application-platform) guide.
72+
### Provision an LKE Cluster
7273

73-
## Set Up Infrastructure
74+
We recommend provisioning an LKE cluster with [App Platform](https://techdocs.akamai.com/cloud-computing/docs/application-platform) enabled and the following minimum requirements:
75+
76+
- 3 **8GB Dedicated CPUs** with [autoscaling](https://techdocs.akamai.com/cloud-computing/docs/manage-nodes-and-node-pools#autoscale-automatically-resize-node-pools) turned on
77+
- A second node pool consisting of at least 2 **RTX4000 Ada x1 Medium [GPU](https://techdocs.akamai.com/cloud-computing/docs/gpu-compute-instances)** plans
7478

7579
Once your LKE cluster is provisioned and the App Platform web UI is available, complete the following steps to continue setting up your infrastructure.
7680

docs/guides/kubernetes/deploy-rag-pipeline-and-chatbot-on-apl/index.md

Lines changed: 7 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@ description: "This guide expands on a previously built LLM and AI inferencing ar
55
authors: ["Akamai"]
66
contributors: ["Akamai"]
77
published: 2025-03-25
8+
modified: 2025-04-17
89
keywords: ['ai','ai inference','ai inferencing','llm','large language model','app platform','lke','linode kubernetes engine','rag pipeline','retrieval augmented generation','open webui','kubeflow']
910
license: '[CC BY-ND 4.0](https://creativecommons.org/licenses/by-nd/4.0)'
1011
external_resources:
@@ -50,9 +51,13 @@ If you prefer a manual installation rather than one using App Platform for LKE,
5051

5152
## Prerequisites
5253

53-
- Complete the deployment in the [Deploy an LLM for AI Inferencing with App Platform for LKE](/docs/guides/deploy-llm-for-ai-inferencing-on-apl) guide. An LKE cluster consisting of at least 3 RTX4000 Ada x1 Medium [GPU](https://techdocs.akamai.com/cloud-computing/docs/gpu-compute-instances) nodes is recommended for AI inference workloads.
54+
- Complete the deployment in the [Deploy an LLM for AI Inferencing with App Platform for LKE](/docs/guides/deploy-llm-for-ai-inferencing-on-apl) guide. Your LKE cluster should include the following minimum hardware requirements:
5455

55-
- [Python3](https://www.python.org/downloads/) and the [venv](https://docs.python.org/3/library/venv.html) Python module installed on your local machine.
56+
- 3 **8GB Dedicated CPUs** with [autoscaling](https://techdocs.akamai.com/cloud-computing/docs/manage-nodes-and-node-pools#autoscale-automatically-resize-node-pools) turned on
57+
58+
- A second node pool consisting of at least 2 **RTX4000 Ada x1 Medium [GPU](https://techdocs.akamai.com/cloud-computing/docs/gpu-compute-instances)** plans
59+
60+
- [Python3](https://www.python.org/downloads/) and the [venv](https://docs.python.org/3/library/venv.html) Python module installed on your local machine
5661

5762
## Set Up Infrastructure
5863

0 commit comments

Comments
 (0)