@@ -133,12 +133,73 @@ Qed.
133133End Lspace.
134134Notation "mu .-Lspace p" := (@Lspace _ _ _ mu p) : type_scope.
135135
136+ Section Lspace_norm.
137+ Context d (T : measurableType d) (R : realType).
138+ Variable mu : {measure set T -> \bar R}.
139+ Variable (p : R). (* add hypothesis p > 1 *)
140+
141+ (* 0 - + should come with proofs that they are in LfunType mu p *)
142+
143+ Notation ty := (T -> R).
144+ Definition nm f := fine ('N[mu]_p%:E[f]).
145+
146+ (* Program Definition fct_zmodMixin := *)
147+ (* @GRing.isZmodule.Build (LfunType mu p%:E) 0 (fun f x => - f x) (fun f g => f \+ g). *)
148+
149+ (* measurable_fun setT f -> measurable_fun setT g -> (1 <= p)%R *)
150+
151+ (* Notation ty := (LfunType mu p%:E). *)
152+ (* Definition nm (f : ty) := fine ('N[mu]_p%:E[f]). *)
153+
154+ (* HB.instance Definition _ := GRing.Zmodule.on ty. *)
155+
156+ Lemma ler_Lnorm_add (f g : ty) :
157+ nm (f \+ g) <= nm f + nm g.
158+ Admitted .
159+
160+ Lemma Lnorm_eq0 f : nm f = 0 -> f = 0.
161+ Admitted .
162+
163+ Lemma Lnorm_natmul f k : nm (f *+ k) = nm f *+ k.
164+ Admitted .
165+
166+ Lemma LnormN f : nm (-f) = nm f.
167+ Admitted .
168+
169+ (*
170+ Lemma ler_Lnorm_add f g :
171+ 'N[mu]_p%:E[(f \+ g)%R] <= 'N[mu]_p%:E[f] + 'N[mu]_p%:E[g].
172+ Admitted.
173+
174+ Lemma Lnorm_eq0 f : 'N[mu]_p%:E[f] = 0 -> f = 0%R.
175+ Admitted.
176+
177+ Lemma Lnorm_natmul f k : 'N[mu]_p%:E [f *+ k]%R = 'N[mu]_p%:E [f] *+ k.
178+ Admitted.
179+
180+ Lemma LnormN f : 'N[mu]_p%:E [- f]%R = 'N[mu]_p%:E [f].
181+ Admitted.
182+ *)
183+
184+ HB.instance Definition _ :=
185+ @Num.Zmodule_isNormed.Build R (*LType mu p%:E *) ty
186+ nm ler_Lnorm_add Lnorm_eq0 Lnorm_natmul LnormN.
187+
188+ (* todo: add equivalent of mx_normZ and HB instance *)
189+
190+ End Lspace_norm.
191+
192+ (*
136193Section Lspace_inclusion.
137194Context d (T : measurableType d) (R : realType).
138195Variable mu : {measure set T -> \bar R}.
139- Variables (p q : \bar R).
140196
141- Lemma Lspace_inclusion : (p <= q)%E -> mu.-Lspace q `<=` mu.-Lspace p.
197+ Lemma Lspace_inclusion p q : (p <= q)%E ->
198+ forall (f : LfunType mu q), ('N[ mu ]_p [ f ] < +oo)%E.
199+ Proof.
200+ move=> pleq f.
142201
202+ isLfun d T R mu p f.
143203
144204End Lspace_inclusion.
205+ *)
0 commit comments