Skip to content

Commit 3c1389e

Browse files
committed
up
1 parent b4bac7d commit 3c1389e

File tree

1 file changed

+63
-2
lines changed

1 file changed

+63
-2
lines changed

theories/lspace.v

Lines changed: 63 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -133,12 +133,73 @@ Qed.
133133
End Lspace.
134134
Notation "mu .-Lspace p" := (@Lspace _ _ _ mu p) : type_scope.
135135

136+
Section Lspace_norm.
137+
Context d (T : measurableType d) (R : realType).
138+
Variable mu : {measure set T -> \bar R}.
139+
Variable (p : R). (* add hypothesis p > 1 *)
140+
141+
(* 0 - + should come with proofs that they are in LfunType mu p *)
142+
143+
Notation ty := (T -> R).
144+
Definition nm f := fine ('N[mu]_p%:E[f]).
145+
146+
(* Program Definition fct_zmodMixin := *)
147+
(* @GRing.isZmodule.Build (LfunType mu p%:E) 0 (fun f x => - f x) (fun f g => f \+ g). *)
148+
149+
(* measurable_fun setT f -> measurable_fun setT g -> (1 <= p)%R *)
150+
151+
(* Notation ty := (LfunType mu p%:E). *)
152+
(* Definition nm (f : ty) := fine ('N[mu]_p%:E[f]). *)
153+
154+
(* HB.instance Definition _ := GRing.Zmodule.on ty. *)
155+
156+
Lemma ler_Lnorm_add (f g : ty) :
157+
nm (f \+ g) <= nm f + nm g.
158+
Admitted.
159+
160+
Lemma Lnorm_eq0 f : nm f = 0 -> f = 0.
161+
Admitted.
162+
163+
Lemma Lnorm_natmul f k : nm (f *+ k) = nm f *+ k.
164+
Admitted.
165+
166+
Lemma LnormN f : nm (-f) = nm f.
167+
Admitted.
168+
169+
(*
170+
Lemma ler_Lnorm_add f g :
171+
'N[mu]_p%:E[(f \+ g)%R] <= 'N[mu]_p%:E[f] + 'N[mu]_p%:E[g].
172+
Admitted.
173+
174+
Lemma Lnorm_eq0 f : 'N[mu]_p%:E[f] = 0 -> f = 0%R.
175+
Admitted.
176+
177+
Lemma Lnorm_natmul f k : 'N[mu]_p%:E [f *+ k]%R = 'N[mu]_p%:E [f] *+ k.
178+
Admitted.
179+
180+
Lemma LnormN f : 'N[mu]_p%:E [- f]%R = 'N[mu]_p%:E [f].
181+
Admitted.
182+
*)
183+
184+
HB.instance Definition _ :=
185+
@Num.Zmodule_isNormed.Build R (*LType mu p%:E*) ty
186+
nm ler_Lnorm_add Lnorm_eq0 Lnorm_natmul LnormN.
187+
188+
(* todo: add equivalent of mx_normZ and HB instance *)
189+
190+
End Lspace_norm.
191+
192+
(*
136193
Section Lspace_inclusion.
137194
Context d (T : measurableType d) (R : realType).
138195
Variable mu : {measure set T -> \bar R}.
139-
Variables (p q : \bar R).
140196
141-
Lemma Lspace_inclusion : (p <= q)%E -> mu.-Lspace q `<=` mu.-Lspace p.
197+
Lemma Lspace_inclusion p q : (p <= q)%E ->
198+
forall (f : LfunType mu q), ('N[ mu ]_p [ f ] < +oo)%E.
199+
Proof.
200+
move=> pleq f.
142201
202+
isLfun d T R mu p f.
143203
144204
End Lspace_inclusion.
205+
*)

0 commit comments

Comments
 (0)