Skip to content

Commit a2aceb6

Browse files
committed
extended reals
1 parent cd4fa44 commit a2aceb6

File tree

1 file changed

+19
-13
lines changed

1 file changed

+19
-13
lines changed

theories/lspace.v

Lines changed: 19 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ Require Import boolp reals ereal.
55
From HB Require Import structures.
66
Require Import classical_sets signed functions topology normedtype cardinality.
77
Require Import sequences esum measure numfun lebesgue_measure lebesgue_integral.
8-
Require Import exp.
8+
Require Import exp hoelder.
99

1010
(******************************************************************************)
1111
(* *)
@@ -29,14 +29,14 @@ Local Open Scope classical_set_scope.
2929
Local Open Scope ring_scope.
3030

3131
HB.mixin Record isLfun d (T : measurableType d) (R : realType)
32-
(mu : {measure set T -> \bar R}) (p : R) (f : T -> R) := {
32+
(mu : {measure set T -> \bar R}) (p : \bar R) (f : T -> R) := {
3333
measurable_lfun : measurable_fun [set: T] f ;
34-
lfuny : (\int[mu]_x (`|f x| `^ p)%:E < +oo)%E
34+
lfuny : ('N[ mu ]_p [ f ] < +oo)%E
3535
}.
3636

3737
#[short(type=LfunType)]
3838
HB.structure Definition Lfun d (T : measurableType d) (R : realType)
39-
(mu : {measure set T -> \bar R}) (p : R) :=
39+
(mu : {measure set T -> \bar R}) (p : \bar R) :=
4040
{f : T -> R & isLfun d T R mu p f}.
4141

4242
#[global] Hint Resolve measurable_lfun : core.
@@ -45,7 +45,7 @@ Arguments lfuny {d} {T} {R} {mu} {p} _.
4545

4646
Section Lfun_canonical.
4747
Context d (T : measurableType d) (R : realType).
48-
Variables (mu : {measure set T -> \bar R}) (p : R).
48+
Variables (mu : {measure set T -> \bar R}) (p : \bar R).
4949

5050
HB.instance Definition _ := gen_eqMixin (LfunType mu p).
5151
HB.instance Definition _ := gen_choiceMixin (LfunType mu p).
@@ -54,7 +54,7 @@ End Lfun_canonical.
5454

5555
Section Lequiv.
5656
Context d (T : measurableType d) (R : realType).
57-
Variables (mu : {measure set T -> \bar R}) (p : R).
57+
Variables (mu : {measure set T -> \bar R}) (p : \bar R).
5858

5959
Definition Lequiv (f g : LfunType mu p) := `[< {ae mu, forall x, f x = g x} >].
6060

@@ -104,19 +104,25 @@ Arguments Lspace : clear implicits.
104104
Lemma LType1_integrable (f : LType mu 1) : mu.-integrable setT (EFin \o f).
105105
Proof.
106106
apply/integrableP; split; first exact/EFin_measurable_fun.
107-
under eq_integral.
108-
move=> x _ /=.
109-
rewrite -(@poweRe1 _ `|f x|%:E)//.
110-
over.
111-
exact: lfuny f.
107+
have := lfuny f.
108+
rewrite unlock /Lnorm ifF ?oner_eq0// invr1 poweRe1; last first.
109+
by apply integral_ge0 => x _; rewrite lee_fin powRr1//.
110+
by under eq_integral => i _ do rewrite powRr1//.
112111
Qed.
113112

114-
Lemma LType2_integrable_sqr (f : LType mu 2) :
113+
Lemma LType2_integrable_sqr (f : LType mu 2%:E) :
115114
mu.-integrable [set: T] (EFin \o (fun x => f x ^+ 2)).
116115
Proof.
117116
apply/integrableP; split.
118117
exact/EFin_measurable_fun/(@measurableT_comp _ _ _ _ _ _ (fun x : R => x ^+ 2)%R _ f)/measurable_lfun.
119-
rewrite (le_lt_trans _ (lfuny f))// ge0_le_integral//.
118+
rewrite (@lty_poweRy _ _ (2^-1))//.
119+
rewrite (le_lt_trans _ (lfuny f))//.
120+
rewrite unlock /Lnorm ifF ?gt_eqF//.
121+
rewrite gt0_ler_poweR//.
122+
- by rewrite in_itv/= integral_ge0// leey.
123+
- rewrite in_itv/= leey integral_ge0// => x _.
124+
by rewrite lee_fin powR_ge0.
125+
rewrite ge0_le_integral//.
120126
- apply: measurableT_comp => //.
121127
exact/EFin_measurable_fun/(@measurableT_comp _ _ _ _ _ _ (fun x : R => x ^+ 2)%R _ f)/measurable_lfun.
122128
- by move=> x _; rewrite lee_fin powR_ge0.

0 commit comments

Comments
 (0)