@@ -5,7 +5,7 @@ Require Import boolp reals ereal.
55From HB Require Import structures.
66Require Import classical_sets signed functions topology normedtype cardinality.
77Require Import sequences esum measure numfun lebesgue_measure lebesgue_integral.
8- Require Import exp.
8+ Require Import exp hoelder .
99
1010(***************************************************************************** *)
1111(* *)
@@ -29,14 +29,14 @@ Local Open Scope classical_set_scope.
2929Local Open Scope ring_scope.
3030
3131HB.mixin Record isLfun d (T : measurableType d) (R : realType)
32- (mu : {measure set T -> \bar R}) (p : R) (f : T -> R) := {
32+ (mu : {measure set T -> \bar R}) (p : \bar R) (f : T -> R) := {
3333 measurable_lfun : measurable_fun [set: T] f ;
34- lfuny : (\int[mu]_x (`|f x| `^ p)%:E < +oo)%E
34+ lfuny : ('N[ mu ]_p [ f ] < +oo)%E
3535}.
3636
3737#[short(type=LfunType)]
3838HB.structure Definition Lfun d (T : measurableType d) (R : realType)
39- (mu : {measure set T -> \bar R}) (p : R) :=
39+ (mu : {measure set T -> \bar R}) (p : \bar R) :=
4040 {f : T -> R & isLfun d T R mu p f}.
4141
4242#[global] Hint Resolve measurable_lfun : core.
@@ -45,7 +45,7 @@ Arguments lfuny {d} {T} {R} {mu} {p} _.
4545
4646Section Lfun_canonical.
4747Context d (T : measurableType d) (R : realType).
48- Variables (mu : {measure set T -> \bar R}) (p : R).
48+ Variables (mu : {measure set T -> \bar R}) (p : \bar R).
4949
5050HB.instance Definition _ := gen_eqMixin (LfunType mu p).
5151HB.instance Definition _ := gen_choiceMixin (LfunType mu p).
@@ -54,7 +54,7 @@ End Lfun_canonical.
5454
5555Section Lequiv.
5656Context d (T : measurableType d) (R : realType).
57- Variables (mu : {measure set T -> \bar R}) (p : R).
57+ Variables (mu : {measure set T -> \bar R}) (p : \bar R).
5858
5959Definition Lequiv (f g : LfunType mu p) := `[< {ae mu, forall x, f x = g x} >].
6060
@@ -104,19 +104,25 @@ Arguments Lspace : clear implicits.
104104Lemma LType1_integrable (f : LType mu 1) : mu.-integrable setT (EFin \o f).
105105Proof .
106106apply/integrableP; split; first exact/EFin_measurable_fun.
107- under eq_integral.
108- move=> x _ /=.
109- rewrite -(@poweRe1 _ `|f x|%:E)//.
110- over.
111- exact: lfuny f.
107+ have := lfuny f.
108+ rewrite unlock /Lnorm ifF ?oner_eq0// invr1 poweRe1; last first.
109+ by apply integral_ge0 => x _; rewrite lee_fin powRr1//.
110+ by under eq_integral => i _ do rewrite powRr1//.
112111Qed .
113112
114- Lemma LType2_integrable_sqr (f : LType mu 2) :
113+ Lemma LType2_integrable_sqr (f : LType mu 2%:E ) :
115114 mu.-integrable [set: T] (EFin \o (fun x => f x ^+ 2)).
116115Proof .
117116apply/integrableP; split.
118117 exact/EFin_measurable_fun/(@measurableT_comp _ _ _ _ _ _ (fun x : R => x ^+ 2)%R _ f)/measurable_lfun.
119- rewrite (le_lt_trans _ (lfuny f))// ge0_le_integral//.
118+ rewrite (@lty_poweRy _ _ (2^-1))//.
119+ rewrite (le_lt_trans _ (lfuny f))//.
120+ rewrite unlock /Lnorm ifF ?gt_eqF//.
121+ rewrite gt0_ler_poweR//.
122+ - by rewrite in_itv/= integral_ge0// leey.
123+ - rewrite in_itv/= leey integral_ge0// => x _.
124+ by rewrite lee_fin powR_ge0.
125+ rewrite ge0_le_integral//.
120126- apply: measurableT_comp => //.
121127 exact/EFin_measurable_fun/(@measurableT_comp _ _ _ _ _ _ (fun x : R => x ^+ 2)%R _ f)/measurable_lfun.
122128- by move=> x _; rewrite lee_fin powR_ge0.
0 commit comments