Skip to content

Commit aad32f3

Browse files
committed
forgotten changes
1 parent 7b3a505 commit aad32f3

File tree

1 file changed

+4
-6
lines changed

1 file changed

+4
-6
lines changed

theories/borel_hierarchy.v

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -184,10 +184,8 @@ Let f x := limn (f_sum^~ x).
184184
Local Lemma ndf_sum y : {homo f_sum^~ y : a b / (a <= b)%N >-> a <= b}.
185185
Proof.
186186
move=> a b ab.
187-
rewrite /f_sum (big_cat_nat _ ab) //= lerDl.
188-
rewrite (big_morph (@^~ y) (id1:=0) (op1:=GRing.add)) //=.
189-
rewrite sumr_ge0 // => i _.
190-
by rewrite mulr_ge0 // invr_ge0 exprn_ge0.
187+
rewrite !f_sumE -subr_ge0 sub_series_geq // sumr_ge0 //= => i _.
188+
by rewrite mulr_ge0.
191189
Qed.
192190

193191
Local Lemma cvgn_f_sum y : cvgn (f_sum^~ y).
@@ -288,8 +286,8 @@ split.
288286
apply: (le_lt_trans (ler_normD _ _)).
289287
rewrite (splitr eps).
290288
apply: ltr_leD => //.
291-
have Hfn0 x := proj1 (elimT andP (sum_f_n_oo f_n_ge0 f_n_le1 n x)).
292-
have Hfn1 x := proj2 (elimT andP (sum_f_n_oo f_n_ge0 f_n_le1 n x)).
289+
have Hfn0 x := proj1 (andP (sum_f_n_oo f_n_ge0 f_n_le1 n x)).
290+
have Hfn1 x := proj2 (andP (sum_f_n_oo f_n_ge0 f_n_le1 n x)).
293291
apply: (@le_trans _ _ (2^-n)).
294292
rewrite ler_norml !lerBDl (le_trans (Hfn1 t)) ?lerDl //=.
295293
by rewrite (le_trans (Hfn1 x)) // lerDr.

0 commit comments

Comments
 (0)