|  | 
|  | 1 | +// <copyright file="ParameterStatisticsTests.cs" company="Math.NET"> | 
|  | 2 | +// Math.NET Numerics, part of the Math.NET Project | 
|  | 3 | +// https://numerics.mathdotnet.com | 
|  | 4 | +// https://github.com/mathnet/mathnet-numerics | 
|  | 5 | +// | 
|  | 6 | +// Copyright (c) 2009-$CURRENT_YEAR$ Math.NET | 
|  | 7 | +// | 
|  | 8 | +// Permission is hereby granted, free of charge, to any person | 
|  | 9 | +// obtaining a copy of this software and associated documentation | 
|  | 10 | +// files (the "Software"), to deal in the Software without | 
|  | 11 | +// restriction, including without limitation the rights to use, | 
|  | 12 | +// copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | 13 | +// copies of the Software, and to permit persons to whom the | 
|  | 14 | +// Software is furnished to do so, subject to the following | 
|  | 15 | +// conditions: | 
|  | 16 | +// | 
|  | 17 | +// The above copyright notice and this permission notice shall be | 
|  | 18 | +// included in all copies or substantial portions of the Software. | 
|  | 19 | +// | 
|  | 20 | +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | 21 | +// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | 
|  | 22 | +// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | 23 | +// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | 
|  | 24 | +// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | 
|  | 25 | +// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
|  | 26 | +// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | 
|  | 27 | +// OTHER DEALINGS IN THE SOFTWARE. | 
|  | 28 | +// </copyright> | 
|  | 29 | + | 
|  | 30 | +using MathNet.Numerics.LinearAlgebra; | 
|  | 31 | +using MathNet.Numerics.Statistics; | 
|  | 32 | +using NUnit.Framework; | 
|  | 33 | +using System; | 
|  | 34 | +using System.Linq; | 
|  | 35 | + | 
|  | 36 | +namespace MathNet.Numerics.Tests.StatisticsTests | 
|  | 37 | +{ | 
|  | 38 | +    [TestFixture] | 
|  | 39 | +    public class ParameterStatisticsTests | 
|  | 40 | +    { | 
|  | 41 | +        #region Polynomial Regression Tests | 
|  | 42 | + | 
|  | 43 | +        [Test] | 
|  | 44 | +        public void PolynomialRegressionTest() | 
|  | 45 | +        { | 
|  | 46 | +            // https://github.com/mathnet/mathnet-numerics/discussions/801 | 
|  | 47 | + | 
|  | 48 | +            // Y = B0 + B1*X + B2*X^2 | 
|  | 49 | +            // Parameter Value     Error     t-value    Pr(>|t|)    LCL         UCL         CI half_width | 
|  | 50 | +            // -------------------------------------------------------------------------------------------- | 
|  | 51 | +            // B0        -0.24     3.07019   -0.07817   0.94481     -13.44995   12.96995    13.20995 | 
|  | 52 | +            // B1        3.46286   2.33969   1.48005    0.27700     -6.60401    13.52972    10.06686 | 
|  | 53 | +            // B2        2.64286   0.38258   6.90799    0.02032     0.99675     4.28897     1.64611 | 
|  | 54 | +            // -------------------------------------------------------------------------------------------- | 
|  | 55 | +            // | 
|  | 56 | +            // Fit statistics | 
|  | 57 | +            // ----------------------------------------- | 
|  | 58 | +            // Degree of freedom        2 | 
|  | 59 | +            // Reduced Chi-Sqr          2.04914 | 
|  | 60 | +            // Residual Sum of Sqaures  4.09829 | 
|  | 61 | +            // R Value                  0.99947 | 
|  | 62 | +            // R-Square(COD)            0.99893 | 
|  | 63 | +            // Adj. R-Square            0.99786 | 
|  | 64 | +            // Root-MSE(SD)             1.43148 | 
|  | 65 | +            // ----------------------------------------- | 
|  | 66 | + | 
|  | 67 | +            double[] x = { 1, 2, 3, 4, 5 }; | 
|  | 68 | +            double[] y = { 6.2, 16.9, 33, 57.5, 82.5 }; | 
|  | 69 | +            var order = 2; | 
|  | 70 | + | 
|  | 71 | +            var Ns = x.Length; | 
|  | 72 | +            var k = order + 1; // number of parameters | 
|  | 73 | +            var dof = Ns - k; // degree of freedom | 
|  | 74 | + | 
|  | 75 | +            // Create the [Ns X k] design matrix | 
|  | 76 | +            // This matrix transforms the polynomial regression problem into a linear system | 
|  | 77 | +            // Each row represents one data point, and columns represent polynomial terms: | 
|  | 78 | +            // - First column: constant term (x^0 = 1) | 
|  | 79 | +            // - Second column: linear term (x^1) | 
|  | 80 | +            // - Third column: quadratic term (x^2) | 
|  | 81 | +            // The matrix looks like: | 
|  | 82 | +            // [ 1  x1  x1^2 ] | 
|  | 83 | +            // [ 1  x2  x2^2 ] | 
|  | 84 | +            // [ ...         ] | 
|  | 85 | +            // [ 1  xN  xN^2 ] | 
|  | 86 | +            var X = Matrix<double>.Build.Dense(Ns, k, (i, j) => Math.Pow(x[i], j)); | 
|  | 87 | + | 
|  | 88 | +            // Create the Y vector | 
|  | 89 | +            var Y = Vector<double>.Build.DenseOfArray(y); | 
|  | 90 | + | 
|  | 91 | +            // Calculate best-fitted parameters using normal equations | 
|  | 92 | +            var XtX = X.TransposeThisAndMultiply(X); | 
|  | 93 | +            var XtXInv = XtX.Inverse(); | 
|  | 94 | +            var Xty = X.TransposeThisAndMultiply(Y); | 
|  | 95 | +            var parameters = XtXInv.Multiply(Xty); | 
|  | 96 | + | 
|  | 97 | +            // Calculate the residuals | 
|  | 98 | +            var residuals = X.Multiply(parameters) - Y; | 
|  | 99 | + | 
|  | 100 | +            // Calculate residual variance (RSS/dof) | 
|  | 101 | +            var RSS = residuals.DotProduct(residuals); | 
|  | 102 | +            var residualVariance = RSS / dof; | 
|  | 103 | + | 
|  | 104 | +            var covariance = ParameterStatistics.CovarianceMatrixForLinearRegression(X, residualVariance); | 
|  | 105 | +            var standardErrors = ParameterStatistics.StandardErrors(covariance); | 
|  | 106 | +            var tStatistics = ParameterStatistics.TStatistics(parameters, standardErrors); | 
|  | 107 | +            var pValues = ParameterStatistics.PValues(tStatistics, dof); | 
|  | 108 | +            var confIntervals = ParameterStatistics.ConfidenceIntervalHalfWidths(standardErrors, dof, 0.95); | 
|  | 109 | + | 
|  | 110 | +            // Calculate total sum of squares for R-squared | 
|  | 111 | +            var yMean = Y.Average(); | 
|  | 112 | +            var TSS = Y.Select(y_i => Math.Pow(y_i - yMean, 2)).Sum(); | 
|  | 113 | +            var rSquared = 1.0 - RSS / TSS; | 
|  | 114 | +            var adjustedRSquared = 1 - (1 - rSquared) * (Ns - 1) / dof; | 
|  | 115 | +            var rootMSE = Math.Sqrt(residualVariance); | 
|  | 116 | + | 
|  | 117 | +            // Check parameters | 
|  | 118 | +            Assert.That(parameters[0], Is.EqualTo(-0.24).Within(0.001)); | 
|  | 119 | +            Assert.That(parameters[1], Is.EqualTo(3.46286).Within(0.001)); | 
|  | 120 | +            Assert.That(parameters[2], Is.EqualTo(2.64286).Within(0.001)); | 
|  | 121 | + | 
|  | 122 | +            // Check standard errors | 
|  | 123 | +            Assert.That(standardErrors[0], Is.EqualTo(3.07019).Within(0.001)); | 
|  | 124 | +            Assert.That(standardErrors[1], Is.EqualTo(2.33969).Within(0.001)); | 
|  | 125 | +            Assert.That(standardErrors[2], Is.EqualTo(0.38258).Within(0.001)); | 
|  | 126 | + | 
|  | 127 | +            // Check t-statistics | 
|  | 128 | +            Assert.That(tStatistics[0], Is.EqualTo(-0.07817).Within(0.001)); | 
|  | 129 | +            Assert.That(tStatistics[1], Is.EqualTo(1.48005).Within(0.001)); | 
|  | 130 | +            Assert.That(tStatistics[2], Is.EqualTo(6.90799).Within(0.001)); | 
|  | 131 | + | 
|  | 132 | +            // Check p-values | 
|  | 133 | +            Assert.That(pValues[0], Is.EqualTo(0.94481).Within(0.001)); | 
|  | 134 | +            Assert.That(pValues[1], Is.EqualTo(0.27700).Within(0.001)); | 
|  | 135 | +            Assert.That(pValues[2], Is.EqualTo(0.02032).Within(0.001)); | 
|  | 136 | + | 
|  | 137 | +            // Check confidence intervals | 
|  | 138 | +            Assert.That(confIntervals[0], Is.EqualTo(13.20995).Within(0.001)); | 
|  | 139 | +            Assert.That(confIntervals[1], Is.EqualTo(10.06686).Within(0.001)); | 
|  | 140 | +            Assert.That(confIntervals[2], Is.EqualTo(1.64611).Within(0.001)); | 
|  | 141 | + | 
|  | 142 | +            // Check fit statistics | 
|  | 143 | +            Assert.That(dof, Is.EqualTo(2)); | 
|  | 144 | +            Assert.That(residualVariance, Is.EqualTo(2.04914).Within(0.001)); | 
|  | 145 | +            Assert.That(RSS, Is.EqualTo(4.09829).Within(0.001)); | 
|  | 146 | +            Assert.That(Math.Sqrt(rSquared), Is.EqualTo(0.99947).Within(0.001)); // R value | 
|  | 147 | +            Assert.That(rSquared, Is.EqualTo(0.99893).Within(0.001)); | 
|  | 148 | +            Assert.That(adjustedRSquared, Is.EqualTo(0.99786).Within(0.001)); | 
|  | 149 | +            Assert.That(rootMSE, Is.EqualTo(1.43148).Within(0.001)); | 
|  | 150 | +        } | 
|  | 151 | + | 
|  | 152 | +        #endregion | 
|  | 153 | + | 
|  | 154 | +        #region Matrix Utility Tests | 
|  | 155 | + | 
|  | 156 | +        [Test] | 
|  | 157 | +        public void CorrelationFromCovarianceTest() | 
|  | 158 | +        { | 
|  | 159 | +            var covariance = Matrix<double>.Build.DenseOfArray(new double[,] { | 
|  | 160 | +                {4.0, 1.2, -0.8}, | 
|  | 161 | +                {1.2, 9.0, 0.6}, | 
|  | 162 | +                {-0.8, 0.6, 16.0} | 
|  | 163 | +            }); | 
|  | 164 | + | 
|  | 165 | +            var correlation = ParameterStatistics.CorrelationFromCovariance(covariance); | 
|  | 166 | + | 
|  | 167 | +            Assert.That(correlation.RowCount, Is.EqualTo(3)); | 
|  | 168 | +            Assert.That(correlation.ColumnCount, Is.EqualTo(3)); | 
|  | 169 | + | 
|  | 170 | +            // Diagonal elements should be 1 | 
|  | 171 | +            for (var i = 0; i < correlation.RowCount; i++) | 
|  | 172 | +            { | 
|  | 173 | +                Assert.That(correlation[i, i], Is.EqualTo(1.0).Within(1e-10)); | 
|  | 174 | +            } | 
|  | 175 | + | 
|  | 176 | +            // Off-diagonal elements should be between -1 and 1 | 
|  | 177 | +            for (var i = 0; i < correlation.RowCount; i++) | 
|  | 178 | +            { | 
|  | 179 | +                for (var j = 0; j < correlation.ColumnCount; j++) | 
|  | 180 | +                { | 
|  | 181 | +                    if (i != j) | 
|  | 182 | +                    { | 
|  | 183 | +                        Assert.That(correlation[i, j], Is.GreaterThanOrEqualTo(-1.0).And.LessThanOrEqualTo(1.0)); | 
|  | 184 | +                    } | 
|  | 185 | +                } | 
|  | 186 | +            } | 
|  | 187 | + | 
|  | 188 | +            // Check specific values (manually calculated) | 
|  | 189 | +            Assert.That(correlation[0, 1], Is.EqualTo(0.2).Within(1e-10)); | 
|  | 190 | +            Assert.That(correlation[0, 2], Is.EqualTo(-0.1).Within(1e-10)); | 
|  | 191 | +            Assert.That(correlation[1, 2], Is.EqualTo(0.05).Within(1e-10)); | 
|  | 192 | +        } | 
|  | 193 | +                 | 
|  | 194 | +        #endregion | 
|  | 195 | + | 
|  | 196 | +        #region Special Cases Tests | 
|  | 197 | + | 
|  | 198 | +        [Test] | 
|  | 199 | +        public void DependenciesTest() | 
|  | 200 | +        { | 
|  | 201 | +            // Create a correlation matrix with high multicollinearity | 
|  | 202 | +            var correlation = Matrix<double>.Build.DenseOfArray(new double[,] { | 
|  | 203 | +                {1.0, 0.95, 0.3}, | 
|  | 204 | +                {0.95, 1.0, 0.2}, | 
|  | 205 | +                {0.3, 0.2, 1.0} | 
|  | 206 | +            }); | 
|  | 207 | + | 
|  | 208 | +            var dependencies = ParameterStatistics.DependenciesFromCorrelation(correlation); | 
|  | 209 | + | 
|  | 210 | +            Assert.That(dependencies.Count, Is.EqualTo(3)); | 
|  | 211 | + | 
|  | 212 | +            // First two parameters should have high dependency values | 
|  | 213 | +            Assert.That(dependencies[0], Is.GreaterThan(0.8)); | 
|  | 214 | +            Assert.That(dependencies[1], Is.GreaterThan(0.8)); | 
|  | 215 | + | 
|  | 216 | +            // Third parameter should have lower dependency | 
|  | 217 | +            Assert.That(dependencies[2], Is.LessThan(0.3)); | 
|  | 218 | +        } | 
|  | 219 | + | 
|  | 220 | +        [Test] | 
|  | 221 | +        public void ConfidenceIntervalsTest() | 
|  | 222 | +        { | 
|  | 223 | +            var standardErrors = Vector<double>.Build.Dense(new double[] { 0.1, 0.2, 0.5 }); | 
|  | 224 | +            var df = 10; // Degrees of freedom | 
|  | 225 | +            var confidenceLevel = 0.95; // 95% confidence | 
|  | 226 | + | 
|  | 227 | +            var halfWidths = ParameterStatistics.ConfidenceIntervalHalfWidths(standardErrors, df, confidenceLevel); | 
|  | 228 | + | 
|  | 229 | +            Assert.That(halfWidths.Count, Is.EqualTo(3)); | 
|  | 230 | + | 
|  | 231 | +            // t-critical for df=10, 95% confidence (two-tailed) is approximately 2.228 | 
|  | 232 | +            var expectedFactor = 2.228; | 
|  | 233 | +            Assert.That(halfWidths[0], Is.EqualTo(standardErrors[0] * expectedFactor).Within(0.1)); | 
|  | 234 | +            Assert.That(halfWidths[1], Is.EqualTo(standardErrors[1] * expectedFactor).Within(0.1)); | 
|  | 235 | +            Assert.That(halfWidths[2], Is.EqualTo(standardErrors[2] * expectedFactor).Within(0.1)); | 
|  | 236 | +        } | 
|  | 237 | + | 
|  | 238 | +        #endregion | 
|  | 239 | +    } | 
|  | 240 | +} | 
0 commit comments