1+ import torch4ms
2+ import torch
3+ import mindspore
4+ import numpy as np
5+
6+ env = torch4ms .default_env ()
7+ env .__enter__ ()
8+
9+ def test_matrix_operations ():
10+ """测试矩阵乘法和加法组合运算"""
11+ # 创建测试数据
12+ np_x = np .array ([[1.0 , 2.0 ], [3.0 , 4.0 ]], dtype = np .float32 )
13+ np_y = np .array ([[5.0 , 6.0 ], [7.0 , 8.0 ]], dtype = np .float32 )
14+ np_z = np .array ([[9.0 , 10.0 ], [11.0 , 12.0 ]], dtype = np .float32 )
15+
16+ x = torch .tensor (np_x )
17+ y = torch .tensor (np_y )
18+ z = torch .tensor (np_z )
19+ result = torch .matmul (x , y ) + z
20+
21+ print (f"x = { x } " )
22+ print (f"y = { y } " )
23+ print (f"z = { z } " )
24+ print (f"x * y + z = { result } " )
25+
26+ expected = np .matmul (np_x , np_y ) + np_z
27+ print (f"\n 预期结果:" )
28+ print (f"{ expected } " )
29+
30+ np_result = result .detach ().numpy ()
31+ print (f"\n 数值验证:" )
32+ print (f"结果是否接近预期: { np .allclose (np_result , expected , atol = 1e-5 )} " )
33+
34+ def test_activation_functions ():
35+ """测试激活函数"""
36+ np_data = np .array ([[- 1.0 , 0.0 , 1.0 ], [- 0.5 , 0.5 , 1.5 ]], dtype = np .float32 )
37+ x = torch .tensor (np_data )
38+
39+ print ("\n " + "=" * 40 )
40+ print ("测试激活函数:" )
41+ print (f"输入: { x } " )
42+
43+ relu_result = torch .relu (x )
44+ print (f"\n ReLU结果: { relu_result } " )
45+
46+ sigmoid_result = torch .sigmoid (x )
47+ print (f"Sigmoid结果: { sigmoid_result } " )
48+
49+ tanh_result = torch .tanh (x )
50+ print (f"Tanh结果: { tanh_result } " )
51+
52+ if __name__ == "__main__" :
53+ print ("PyTorch版本: {}" .format (torch .__version__ ))
54+ print ("MindSpore版本: {}" .format (mindspore .__version__ ))
55+ print ("=" * 40 )
56+
57+ test_matrix_operations ()
58+ test_activation_functions ()
59+ env .__exit__ (None , None , None )
0 commit comments