-
Notifications
You must be signed in to change notification settings - Fork 580
Open
Description
Discussed in #2041
Originally posted by dineshchitlangia January 16, 2025
I setup R-GAT following the README and downloaded the full dataset.
Verified the dataset directory is 2.2TB as expected.
What am I missing?
(gnn) $:/mlperf/inference/graph/R-GAT$ python3 main.py --dataset igbh-dgl --dataset-path igbh/ --profile rgat-dgl-full --model-path $MODEL_PATH --device cpu --dtype fp32 --scenario Offline
(gnn) $:/mlperf/inference/graph/R-GAT$ INFO:main:Namespace(dataset='igbh-dgl', dataset_path='igbh/', in_memory=False, layout='COO', profile='rgat-dgl-full', scenario='Offline', max_batchsize=1, threads=1, accuracy=False, find_peak_performance=False, backend='dgl', model_name='rgat', output='output', qps=None, model_path='/mlperf/inference/graph/R-GAT/model/', dtype='fp32', device='cpu', user_conf='user.conf', audit_conf='audit.config', time=None, count=None, debug=False, performance_sample_count=5000, max_latency=None, samples_per_query=8)
/mlperf/inference/graph/R-GAT/dgl_utilities/feature_fetching.py:231: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this prog ram. (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:206.)
return edge, torch.from_numpy(
Traceback (most recent call last):
File "/mlperf/inference/graph/R-GAT/main.py", line 510, in <module>
main()
File "/mlperf/inference/graph/R-GAT/main.py", line 363, in main
ds = dataset_class(
File "/mlperf/inference/graph/R-GAT/dgl_utilities/feature_fetching.py", line 131, in __init__
self.igbh_dataset = IGBHeteroGraphStructure(
File "/mlperf/inference/graph/R-GAT/dgl_utilities/feature_fetching.py", line 203, in __init__
self.edge_dict = self.load_edge_dict()
File "/mlperf/inference/graph/R-GAT/dgl_utilities/feature_fetching.py", line 237, in load_edge_dict
loaded_edges = {
File "/mlperf/inference/graph/R-GAT/dgl_utilities/feature_fetching.py", line 237, in <dictcomp>
loaded_edges = {
File "/home/amd/miniconda3/envs/gnn/lib/python3.10/concurrent/futures/_base.py", line 621, in result_iterator
yield _result_or_cancel(fs.pop())
File "/home/amd/miniconda3/envs/gnn/lib/python3.10/concurrent/futures/_base.py", line 319, in _result_or_cancel
return fut.result(timeout)
File "/home/amd/miniconda3/envs/gnn/lib/python3.10/concurrent/futures/_base.py", line 451, in result
return self.__get_result()
File "/home/amd/miniconda3/envs/gnn/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result
raise self._exception
File "/home/amd/miniconda3/envs/gnn/lib/python3.10/concurrent/futures/thread.py", line 58, in run
result = self.fn(*self.args, **self.kwargs)
File "/mlperf/inference/graph/R-GAT/dgl_utilities/feature_fetching.py", line 232, in load_edge
np.load(osp.join(parent_path, edge, "edge_index.npy"), mmap_mode=mmap))
File "/home/amd/miniconda3/envs/gnn/lib/python3.10/site-packages/numpy/lib/npyio.py", line 427, in load
fid = stack.enter_context(open(os_fspath(file), "rb"))
FileNotFoundError: [Errno 2] No such file or directory: 'igbh/full/processed/paper__written_by__author/edge_index.npy'
Contents of dataset
(gnn)$:/mlperf/inference/graph/R-GAT$ ls -R igbh/full/processed/
igbh/full/processed/:
author paper paper__cites__paper train_idx.pt val_idx.pt
igbh/full/processed/author:
author_id_index_mapping.npy node_feat.npy
igbh/full/processed/paper:
node_feat.npy node_label_19.npy node_label_2K.npy paper_id_index_mapping.npy
igbh/full/processed/paper__cites__paper:
edge_index.npy
On investigating the stack trace further:
edges = [ |
expects
edges = [
"paper__cites__paper",
"paper__written_by__author",
"author__affiliated_to__institute",
"paper__topic__fos"]
But it seems the dataset does not have other edges except "paper__cites__paper"
Metadata
Metadata
Assignees
Labels
No labels