@@ -6,34 +6,40 @@ Each example was created as a _Jupyter notebook_ (http://jupyter.org/).
6
6
These notebooks can be downloaded and used, or you can simply copy/paste the
7
7
relevant code.
8
8
9
+
9
10
## Getting started
10
11
- [ Optimisation: First example] ( ./optimisation-first-example.ipynb )
11
12
- [ Sampling: First example] ( ./sampling-first-example.ipynb )
12
13
- [ Writing a model] ( ./writing-a-model.ipynb )
13
14
- [ Writing a custom LogPDF] ( ./writing-a-logpdf.ipynb )
14
15
- [ Writing a custom LogPrior] ( ./writing-a-prior.ipynb )
15
16
17
+
16
18
## Optimisation
17
19
20
+ - [ Optimising a loglikelihood] ( ./optimisation-on-a-loglikelihood.ipynb )
21
+ - [ Spotting unidentifiable parameters] ( ./optimisation-spotting-unidentifiable-parameters.ipynb )
22
+ - [ Transformed parameter space] ( ./optimisation-transformed-parameters.ipynb )
23
+ - [ Ask-and-tell interface] ( ./optimisation-ask-and-tell.ipynb )
24
+ - [ Convenience methods fmin() and curve\_ fit()] ( ./optimisation-convenience.ipynb )
25
+
18
26
### Particle-based methods
19
27
- [ CMA-ES] ( ./optimisation-cmaes.ipynb )
20
28
- [ PSO] ( ./optimisation-pso.ipynb )
21
29
- [ SNES] ( ./optimisation-snes.ipynb )
22
30
- [ XNES] ( ./optimisation-xnes.ipynb )
23
31
24
- ### Further optimisation
25
-
26
- - [ Transformed parameter space] ( ./optimisation-transformed-parameters.ipynb )
27
- - [ Ask-and-tell interface] ( ./optimisation-ask-and-tell.ipynb )
28
- - [ Convenience methods fmin() and curve\_ fit()] ( ./optimisation-convenience.ipynb )
29
32
30
33
## Sampling
31
34
32
35
### MCMC without gradients
33
- - [ Metropolis Random Walk MCMC] ( ./sampling-metropolis-mcmc.ipynb )
34
36
- [ Adaptive Covariance MCMC] ( ./sampling-adaptive-covariance-mcmc.ipynb )
35
- - [ Population MCMC] ( ./sampling-population -mcmc.ipynb )
37
+ - [ Metropolis Random Walk MCMC] ( ./sampling-metropolis -mcmc.ipynb )
36
38
- [ Differential Evolution MCMC] ( ./sampling-differential-evolution-mcmc.ipynb )
39
+ - [ Dream MCMC] ( ./sampling-dream-mcmc.ipynb )
40
+ - [ Emcee Hammer] ( ./sampling-emcee-hammer.ipynb )
41
+ - [ Hamiltonian MCMC] ( ./sampling-hamiltonian-mcmc.ipynb )
42
+ - [ Population MCMC] ( ./sampling-population-mcmc.ipynb )
37
43
38
44
### Nested sampling
39
45
- [ Ellipsoidal nested rejection sampling] ( ./sampling-ellipsoidal-nested-rejection-sampling.ipynb )
@@ -48,8 +54,10 @@ relevant code.
48
54
### Further sampling
49
55
50
56
- [ Effective sample size] ( ./sampling-effective-sample-size.ipynb )
57
+ - [ Cauchy noise model] ( ./sampling-cauchy-sampling-error.ipynb )
51
58
- [ Student-t noise model] ( ./sampling-student-t-sampling-error.ipynb )
52
59
60
+
53
61
## Toy problems
54
62
55
63
### Models
@@ -67,6 +75,8 @@ relevant code.
67
75
68
76
### Distributions
69
77
78
+ - [ Annulus distribution] ( ./toy-distribution-annulus.ipynb )
79
+ - [ Cone distribution] ( ./toy-distribution-cone.ipynb )
70
80
- [ Multimodal normal distribution] ( ./toy-distribution-multimodal-normal.ipynb )
71
81
- [ Rosenbrock function] ( ./toy-distribution-rosenbrock.ipynb )
72
82
- [ Simple Egg Box] ( ./toy-distribution-simple-egg-box.ipynb )
0 commit comments