@@ -25,15 +25,18 @@ class BayesianDynamicFactor(PyMCStateSpace):
25
25
26
26
Parameters
27
27
----------
28
- k_endog : int
29
- Number of observed time series.
30
-
31
28
k_factors : int
32
29
Number of latent factors.
33
30
34
31
factor_order : int
35
32
Order of the VAR process for the latent factors.
36
33
34
+ k_endog : int
35
+ Number of observed time series.
36
+
37
+ endog_names : Sequence[str], optional
38
+ Names of the observed time series. If not provided, default names will be generated as `endog_1`, `endog_2`, ..., `endog_k`.
39
+
37
40
exog : array_like, optional
38
41
Array of exogenous regressors for the observation equation (nobs x k_exog).
39
42
Default is None, meaning no exogenous regressors.
@@ -50,9 +53,6 @@ class BayesianDynamicFactor(PyMCStateSpace):
50
53
error_cov_type : {'scalar', 'diagonal', 'unstructured'}, optional
51
54
Structure of the covariance matrix of the observation errors.
52
55
53
- enforce_stationarity : bool, optional
54
- Whether to transform AR parameters to enforce stationarity.
55
-
56
56
filter_type: str, default "standard"
57
57
The type of Kalman Filter to use. Options are "standard", "single", "univariate", "steady_state",
58
58
and "cholesky". See the docs for kalman filters for more details.
0 commit comments